1
|
Boruah P, Gupta R, Katiyar V. Fabrication of cellulose nanocrystal (CNC) from waste paper for developing antifouling and high-performance polyvinylidene fluoride (PVDF) membrane for water purification. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
2
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
3
|
Elmi Fard N, Fazaeli R. Fabrication of superhydrophobic
CoFe
2
O
4
/polyaniline/covalent organic frameworks/cotton fabric membrane and evaluation of its efficiency in separation of olive oil from water. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Narges Elmi Fard
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Reza Fazaeli
- Department of Chemical Engineering, Faculty of Engineering, South Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
4
|
Ni P, Zeng J, Chen H, Yang F, Yi X. Effect of different factors on treatment of oily wastewater by TiO 2/Al 2O 3-PVDF ultrafiltration membrane. ENVIRONMENTAL TECHNOLOGY 2022; 43:2981-2989. [PMID: 33797337 DOI: 10.1080/09593330.2021.1912832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
An ultrafiltration membrane developed by our research group was applied to treat simulated emulsified oil wastewater. ATR-FTIR, SEM, TEM, and Zeta potential analyzes demonstrated that the modified ultrafiltration membrane (MM) has excellent stability and anti-fouling capacity than origin membrane (OM), which possesses a pure water flux of 260 L·m-2·h-1 and oil/water (o/w) rejection of 98.5 ± 0.33%. Inorganic salt CaCl2 has more considerable influence than MgSO4 and NaCl under the same mass concentration in the two membranes UF process. Along with concentration increasing, flux sharply reduces; meanwhile, the rejection has an opposite trend. Moreover, permeation flux has a maximum value, and the rejection also gets its optimal state under neutral conditions during the pH value of 2-12. The membrane also exhibits excellent anti-fouling performance and anti- o/w adsorption properties with an adsorption rate below 0.8% compared with OM, which has an adsorption rate of nearly 2.1%, respectively. A kind of new UF membrane developed by our research group was applied to treat simulated o/w. ATR-FTIR, SEM, TEM, and Zeta potential analyzes demonstrated that PVDF-Al2O3/TiO2 material has excellent stability and anti-fouling capacity. CaCl2 has the greatest influence than MgSO4 and NaCl under the same mass concentration. Moreover, permeation flux has maximum value and the rejection also gets its optimal state under neutral conditions during pH 2-12. The membrane also exhibits excellent anti-fouling performance and anti-O/W adsorption properties with adsorption rate below 0.8% compared with OM which has an adsorption rate nearly 2.1%, respectively.
Collapse
Affiliation(s)
- Pengfei Ni
- School of Environmental Science and Engineering, Hainan University, Haikou, People's Republic of China
| | - Jie Zeng
- School of Environmental Science and Engineering, Hainan University, Haikou, People's Republic of China
| | - Honglin Chen
- School of Environmental Science and Engineering, Hainan University, Haikou, People's Republic of China
| | - Fei Yang
- School of Environmental Science and Engineering, Hainan University, Haikou, People's Republic of China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, People's Republic of China
| | - Xuesong Yi
- School of Environmental Science and Engineering, Hainan University, Haikou, People's Republic of China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, People's Republic of China
| |
Collapse
|
5
|
Zhou L, Yang J, Ma F, Pi S, Tang A, Li A. Recycling of Pd(0) catalysts by magnetic nanocomposites-microbial extracellular polymeric substances@Fe 3O 4. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111834. [PMID: 33348228 DOI: 10.1016/j.jenvman.2020.111834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Palladium (Pd) is extremely expensive due to its scarcity and excellent catalytic performance. Thus, the recovery of Pd has become increasingly important. Herein, microbial extracellular polymeric substances (EPS) and magnetic nanocomposite EPS@Fe3O4 were applied to recover Pd catalysts from Pd(II) wastewater. Results indicated that Pd(II) was reduced to Pd (0), which was then adsorbed by EPS (101.21 mg/g) and EPS@Fe3O4 (126.30 mg/(g EPS)). After adsorbing Pd, EPS@Fe3O4 could be collected by magnetic separation. The recovered Pd showed excellent catalytic activity in the reduction of methylene blue (MB). The pseudo-second-order kinetic model and Redlich-Peterson model best fit the adsorption results. According to spectral analysis, Pd(II) was reduced to Pd (0) by chemical groups in EPS and EPS@Fe3O4, and the hydroxyl had a chelating effect on adsorbed Pd. Therefore, EPS@Fe3O4 is an efficient adsorbent for recovering Pd from Pd(II) wastewater.
Collapse
Affiliation(s)
- Lu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Aiqi Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
6
|
Salama A. Simplified Formula for the Critical Entry Pressure and a Comprehensive Insight into the Critical Velocity of Dislodgment of a Droplet in Crossflow Filtration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9634-9642. [PMID: 32693605 DOI: 10.1021/acs.langmuir.0c01852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Produced water treatment remains a challenging issue for the oil production industry. Finding ways to effectively treat oily water systems without incurring higher operational costs is the struggle and focus of recent research work. The success in establishing a modeling approach to study the filtration of oily water systems is dependent upon our understanding of the fate of oil droplets at the membrane surface. It has been determined that four fates confront oil droplets at the membrane surface, namely, permeation, breakup, pinning, and rejection. Conditions for manifestation of any of these four fates depend on two operating conditions (transmembrane pressure and crossflow velocity) in comparison with two critical conditions (entry pressure and critical velocity of dislodgment). In this work, a new simplified formula for the critical entry pressure is introduced. It compares very well with the formula already existing in the literature. Furthermore, the complete model for the critical velocity of dislodgment in crossflow filtration is presented and highlighted. More investigations on the physical processes that are involved during the pinning of a droplet at a pore opening are presented. In addition, a thorough analysis of the forces that are involved during the permeation of a droplet that could lead to its breakup is presented. It is found that, once the droplet reaches the pore opening, the interfacial tension force and the pressure force continue to increase. Following the critical configuration, these forces continuously decline and the drag force due to the crossflow field, therefore, becomes sufficient to break up the droplet.
Collapse
Affiliation(s)
- Amgad Salama
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
7
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|
8
|
Zhang B, Zhang R, Huang D, Shen Y, Gao X, Shi W. Membrane fouling in microfiltration of alkali/surfactant/polymer flooding oilfield wastewater: Effect of interactions of key foulants. J Colloid Interface Sci 2020; 570:20-30. [DOI: 10.1016/j.jcis.2020.02.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
9
|
Fu X, Zhu L, Liang S, Jin Y, Yang S. Sulfonated poly(α,β,β-trifluorostyrene)-doped PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling property. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Thermo-responsive separation membrane with smart anti-fouling and self-cleaning properties. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Analysis of Adsorption and Decomposition of Odour and Tar Components in Tobacco Smoke on Non-Woven Fabric-Supported Photocatalysts. Catalysts 2020. [DOI: 10.3390/catal10030304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The release of substantial amounts of toxicologically significant, irritant, and malodourous compounds during the complete combustion of tobacco can generate an unpleasant environment, especially indoors. Herein, we developed non-woven fabric-supported UV- and visible-light-responsive photocatalysts capable of adsorbing and decomposing the odour and tar components of tobacco smoke under irradiation with UV or visible light. The processes of odour component adsorption and subsequent decomposition under irradiation were evaluated in terms of colour changes in the catalytic system and by gas chromatography–mass spectrometry. By considering three different photocatalysts, namely TiO2, Fe(III)-grafted TiO2, and Cu(II)-grafted WO3, we assessed the magnitude of odour and tar component adsorption on the fabric fibres, as well as the decomposition of these species after specific visible light or UV irradiation periods. Considering the expansion of our technology for practical applications, the best results among the three tested materials were obtained for non-woven fabric-supported Fe/TiO2. We believe that our technology can be implemented in the design of interior decoration materials for creating a comfortable environment.
Collapse
|
12
|
Adsorption mechanisms of crude oil onto polytetrafluoroethylene membrane: Kinetics and isotherm, and strategies for adsorption fouling control. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Incorporation of UiO-66-NH2 into modified PAN nanofibers to enhance adsorption capacity and selectivity for oil removal. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2035-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|