1
|
Wulf V, Bisker G. Integrating Single-Walled Carbon Nanotubes into Supramolecular Assemblies: From Basic Interactions to Emerging Applications. ACS NANO 2024; 18:29380-29393. [PMID: 39428637 PMCID: PMC11526426 DOI: 10.1021/acsnano.4c06843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Integrating single-walled carbon nanotubes (SWCNTs) into supramolecular self-assemblies harnesses the distinctive mechanical, optical, and electronic properties of the nanoparticles alongside the structural and chemical properties of the assemblies. Organic molecules capable of forming supramolecular assemblies through hydrophobic, van der Waals, and π-π interactions have been demonstrated to be particularly effective in dispersing and functionalizing SWCNTs, as these same interactions facilitate the binding to the hydrophobic graphene-like surface of the SWCNTs. This review discusses a variety of self-assembling structures that were shown to integrate SWCNTs, ranging from simple micelles and ring structures to complex DNA origami and three-dimensional hydrogels formed by low-molecular-weight gelators. We explore the integration of SWCNTs into various supramolecular assemblies and highlight emerging applications of these composite materials, such as the mechanical enforcement of self-assembling hydrogels and leveraging the near-infrared (NIR) fluorescence properties of SWCNTs for monitoring the molecular self-assembly process. Notably, the distinctive NIR fluorescence of SWCNTs, which overlaps with the biological transparency window, offers significant opportunities for noninvasive sensing applications within the supramolecular platforms. Future research into a deeper understanding of the interactions between SWCNTs and different supramolecular frameworks will expand the potential applications of SWCNT-integrated supramolecular assemblies in fields like biomedical engineering, electronic devices, and environmental sensing.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Piwoński H, Szczepski K, Jaremko M, Jaremko Ł, Habuchi S. Shielding Effects Provide a Dominant Mechanism in J-Aggregation-Induced Photoluminescence Enhancement of Carbon Nanotubes. ACS OMEGA 2024; 9:16496-16507. [PMID: 38617658 PMCID: PMC11007775 DOI: 10.1021/acsomega.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
The unique photophysical properties of single-walled carbon nanotubes (SWCNTs) exhibit great potential for bioimaging applications. This led to extensive exploration of photosensitization methods to improve their faint shortwave infrared (SWIR) photoluminescence. Here, we report the mechanisms of SWCNT-assisted J-aggregation of cyanine dyes and the associated photoluminescence enhancement of SWCNTs in the SWIR spectral region. Surprisingly, we found that excitation energy transfer between the cyanine dyes and SWCNTs makes a negligible contribution to the overall photoluminescence enhancement. Instead, the shielding of SWCNTs from the surrounding water molecules through hydrogen bond-assisted macromolecular reorganization of ionic surfactants triggered by counterions and the physisorption of the dye molecules on the side walls of SWCNTs play a primary role in the photoluminescence enhancement of SWCNTs. We observed 2 orders of magnitude photoluminescence enhancement of SWCNTs by optimizing these factors. Our findings suggest that the proper shielding of SWCNTs is the critical factor for their photoluminescence enhancement, which has important implications for their application as imaging agents in biological settings.
Collapse
Affiliation(s)
- Hubert Piwoński
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Satoshi Habuchi
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Sengupta S, Versluis J, Bakker HJ. Observation of a Two-Dimensional Hydrophobic Collapse at the Surface of Water Using Heterodyne-Detected Surface Sum-Frequency Generation. J Phys Chem Lett 2023; 14:9285-9290. [PMID: 37815274 PMCID: PMC10591499 DOI: 10.1021/acs.jpclett.3c01530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
We study the effect of sodium chloride (NaCl) on the properties of the interface of water and the surfactant dodecyl sulfate (DS-) using heterodyne-detected vibrational sum-frequency generation spectroscopy. We find that the signal of the O-H stretch vibrations of oriented water molecules at the interface is highly nonlinearly dependent on the NaCl concentration. This nonlinear dependence is explained by a combination of screening of the electric field of surface-bound DS- ions pointing into the bulk and screening of the Coulomb repulsion between the headgroups of the DS- ions in the surface plane. The latter effect strongly increases the oriented water signal within a limited NaCl concentration range of 10-100 mM, indicating a two-dimensional hydrophobic collapse of the surfactant layer. The occurrence of collapse is supported by model calculations of the surface potential and surface surfactant density.
Collapse
Affiliation(s)
| | - Jan Versluis
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ádám AA, Ziegenheim S, Janovák L, Szabados M, Bús C, Kukovecz Á, Kónya Z, Dékány I, Sipos P, Kutus B. Binding of Ca 2+ Ions to Alkylbenzene Sulfonates: Micelle Formation, Second Critical Concentration and Precipitation. MATERIALS 2023; 16:ma16020494. [PMID: 36676235 PMCID: PMC9864979 DOI: 10.3390/ma16020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Anionic surfactants, such as sodium linear alkylbenzene sulfonates (NaLAS), are utilized in various fields, including industry, household, and agriculture. The efficiency of their use in aqueous environments is significantly affected by the presence of cations, Ca2+ and Mg2+ in particular, as they can decrease the concentration of the surfactant due to precipitation. To understand cation-sulfonate interactions better, we study both NaLAS colloidal solutions in the presence of CaCl2 and precipitates forming at higher salt concentrations. Upon addition of CaCl2, we find the surface tension and critical micelle concentration of NaLAS to decrease significantly, in line with earlier findings for alkylbenzylsulfonates in the presence of divalent cations. Strikingly, an increase in the surface tension is discernible above 0.6 g L-1 NaLAS, accompanied by the decrease of apparent micelle sizes, which in turn gives rise to transparent systems. Thus, there appears to be a second critical concentration indicating another micellar equilibrium. Furthermore, the maximum salt tolerance of the surfactant is 0.1 g L-1 Ca2+, above which rapid precipitation occurs yielding sparingly soluble CaLAS2∙2H2O.
Collapse
Affiliation(s)
- Adél Anna Ádám
- Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | | | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Márton Szabados
- Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Bús
- Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: (P.S.); (B.K.)
| | - Bence Kutus
- Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: (P.S.); (B.K.)
| |
Collapse
|
5
|
Bui TT, Colón LA, Velarde L. Intermolecular Interactions at the Silica-Liquid Interface Modulate the Fermi Resonance Coupling in Surface Methanol. J Phys Chem Lett 2021; 12:5695-5702. [PMID: 34115940 DOI: 10.1021/acs.jpclett.1c01015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The buried solid/liquid interface between hydrophilic fused silica and binary solvent mixtures of acetonitrile (MeCN) and methanol (MeOH) was studied with vibrational sum-frequency generation (vSFG) spectroscopy. Our data showed that at high relative concentrations of methanol, the Fermi resonance peak in the vSFG spectrum is greatly suppressed, and it progressively gains intensity as methanol is diluted with perdeuterated acetonitrile. This phenomenon is quantified by the Fermi resonance coupling coefficient, W, extracted using a two-level model, as well as the experimental intensity ratio, R, of the methyl Fermi resonance band to that of the symmetric stretch. At a 1.0 MeOH mole fraction, W and R values were 10 ± 10 cm-1 and 0.01 ± 0.02, respectively, whereas at a 0.1 mole fraction, W and R increased to 46 ± 4 cm-1 and 0.43 ± 0.16, respectively. This indicates that solvation with acetonitrile effectively tunes the Fermi coupling of methanol vibrations at the silica/liquid interface.
Collapse
Affiliation(s)
- Thomas T Bui
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Luis A Colón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
6
|
AlSalem HS, Al-Goul ST, García-Miranda Ferrari A, Brownson DAC, Velarde L, Koehler SPK. Imaging the reactivity and width of graphene's boundary region. Chem Commun (Camb) 2020; 56:9612-9615. [PMID: 32776054 DOI: 10.1039/d0cc02675a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of graphene at its boundary region has been imaged using non-linear spectroscopy to address the controversy whether the terraces of graphene or its edges are more reactive. Graphene was functionalised with phenyl groups, and we subsequently scanned our vibrational sum-frequency generation setup from the functionalised graphene terraces across the edges. A greater phenyl signal is clearly observed at the edges, showing evidence of increased reactivity in the boundary region. We estimate an upper limit of 1 mm for the width of the CVD graphene boundary region.
Collapse
Affiliation(s)
- Huda S AlSalem
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK and School of Chemistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Soha T Al-Goul
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA and School of Chemistry, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Alejandro García-Miranda Ferrari
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK. and Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Dale A C Brownson
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK. and Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA
| | - Sven P K Koehler
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
7
|
Chowdhury AU, Taylor GJ, Bocharova V, Sacci RL, Luo Y, McClintic WT, Ma YZ, Sarles SA, Hong K, Collier CP, Doughty B. Insight into the Mechanisms Driving the Self-Assembly of Functional Interfaces: Moving from Lipids to Charged Amphiphilic Oligomers. J Am Chem Soc 2019; 142:290-299. [PMID: 31801348 DOI: 10.1021/jacs.9b10536] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.
Collapse
|
8
|
Wu W, Liu X, Chen SL, Yuan Q, Gan W. Particle adsorption at the oil-water interface studied with second harmonic generation. SOFT MATTER 2019; 15:7672-7677. [PMID: 31490517 DOI: 10.1039/c9sm01125k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, energetics of the adsorption of polystyrene nanoparticles at the hexadecane-water interface was studied with second harmonic generation. The adsorption of positively and negatively charged nanoparticles at the oil-water interface induced a decrease and an increase in the SHG emission from the interface, respectively. This change in the SHG emission, which is similar to that upon the adsorption of ionic surfactants at the hexadecane-water interface, which we reported previously, was then used as an indicator of particle adsorption at the interface. The adsorption free energies of the particles with a diameter of 20 nm at the hexadecane-water interface were found to be -14.7 ± 0.5 kcal mol-1, -14.4 ± 0.4 kcal mol-1 and -15.1 ± 0.3 kcal mol-1 for the amidine, carboxyl and sulfate latex beads, respectively. This result implied that the van der Waals interaction between the oil phase and the polystyrene particles is capable of driving negatively charged particles to the negatively charged hexadecane-water interface. The principle of like dissolves like played a major role in the adsorption of polystyrene particles from the aqueous phase to the oil-water interface. The origin of the SHG emission from the oil-water interface was also discussed.
Collapse
Affiliation(s)
- Wei Wu
- Department of Chemistry, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China
| | - Xinxin Liu
- State Key Laboratory of Advanced Welding and Joining, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
| | - Shun-Li Chen
- State Key Laboratory of Advanced Welding and Joining, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
| | - Qunhui Yuan
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- State Key Laboratory of Advanced Welding and Joining, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
| |
Collapse
|