1
|
Boukair K, Salazar JM, Weber G, Badawi M, Ouaskit S, Simon JM. Toward the development of sensors for lung cancer: The adsorption of 1-propanol on hydrophobic zeolites. J Chem Phys 2023; 159:214712. [PMID: 38059548 DOI: 10.1063/5.0168230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
A healthy breath is mainly composed of water, carbon dioxide, molecular nitrogen, and oxygen and it contains many species, in small quantities, which are related to the ambient atmosphere and the metabolism. The breath of a person affected by lung cancer presents a concentration of 1-propanol higher than usual. In this context, the development of specific sensors to detect 1-propanol from breath is of high interest. The amount of propanol usually detected on the breath is of few ppb; this small quantity is a handicap for a reliable diagnostic. This limitation can be overcome if the sensor is equipped with a pre-concentrator. Our studies aim to provide an efficient material playing this role. This will contribute to the development of reliable and easy to use lung cancer detectors. For this, we investigate the properties of a few hydrophobic porous materials (chabazite, silicalite-1, and dealuminated faujasite). Hydrophobic structures are used to avoid saturation of materials by the water present in the exhaled breath. Our experimental and simulation results suggest that silicalite -1 (MFI) is the most suitable structure to be used as a pre-concentrator.
Collapse
Affiliation(s)
- K Boukair
- Laboratoire de Physique de la Matière Condensée, Hassan 2 University, Casablanca, Morroco
| | - J M Salazar
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| | - G Weber
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| | - M Badawi
- Laboratoire de Physique et Chimie Théoriques, University of Lorraine, Nancy, France
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | - S Ouaskit
- Laboratoire de Physique de la Matière Condensée, Hassan 2 University, Casablanca, Morroco
| | - J-M Simon
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| |
Collapse
|
2
|
Radhakrishnan S, Lejaegere C, Duerinckx K, Lo WS, Morais AF, Dom D, Chandran CV, Hermans I, Martens JA, Breynaert E. Hydrogen bonding to oxygen in siloxane bonds drives liquid phase adsorption of primary alcohols in high-silica zeolites. MATERIALS HORIZONS 2023; 10:3702-3711. [PMID: 37401863 PMCID: PMC10463557 DOI: 10.1039/d3mh00888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Upon liquid phase adsorption of C1-C5 primary alcohols on high silica MFI zeolites (Si/Al = 11.5-140), the concentration of adsorbed molecules largely exceeds the concentration of traditional adsorption sites: Brønsted acid and defect sites. Combining quantitative in situ1H MAS NMR, qualitative multinuclear NMR and IR spectroscopy, hydrogen bonding of the alcohol function to oxygen atoms of the zeolite siloxane bridges (Si-O-Si) was shown to drive the additional adsorption. This mechanism co-exists with chemi- and physi-sorption on Brønsted acid and defect sites and does not exclude cooperative effects from dispersive interactions.
Collapse
Affiliation(s)
- Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Charlotte Lejaegere
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Wei-Shang Lo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Alysson F Morais
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Dirk Dom
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - C Vinod Chandran
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Ive Hermans
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
- Department of Chemical and Biological Engineering, Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI 53726, USA
| | - Johan A Martens
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium.
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven, Celestijnenlaan 200F Box 2461, 3001-Heverlee, Belgium
| |
Collapse
|
3
|
Mousavi SH, Chen K, Yao J, Zavabeti A, Liu JZ, Li GK. Screening of Alkali Metal-Exchanged Zeolites for Nitrogen/Methane Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1277-1287. [PMID: 36626709 DOI: 10.1021/acs.langmuir.2c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Methane (CH4) is the primary component of natural gas and must be purified to a certain level before it can be used as pipeline gas or liquified natural gas (LNG). In particular, nitrogen (N2), a common contaminant in natural gas needs to be rejected to increase the heating value of the gas and meet the LNG product specifications. The development of energy-efficient N2 removal technologies is hampered by N2's inertness and its resemblance to CH4 in terms of kinetic size and polarizability. N2-selective materials are so rare. Here, for the first time, we screened 1425 alkali metal cation exchange zeolites to identify the candidates with the best potential for the separation of N2 from CH4. We discovered a few extraordinary zeolite frameworks capable of achieving equilibrium selectivity toward N2. Particularly, Li+-RRO-3 zeolite with a specific two-dimensional structure demonstrated a selective N2 adsorption capacity of 2.94 mmol/g at 283 K and 1 bar, outperforming the capacity of all known zeolites. Through an ab initio density functional theory study, we found that the five-membered ring of the RRO framework is the most stable cationic site for Li+, and this Li+ can interact with multiple N2 molecules but only one CH4, revealing the mechanism for the high capacity and selectivity of N2. This work suggests promising adsorbents to enable N2 rejection from CH4 in the gas industry without going for energy-intensive cryogenic distillations.
Collapse
Affiliation(s)
- Seyed Hesam Mousavi
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kaifei Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jie Yao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
5
|
Gómez-Álvarez P, Noya EG, Lomba E. Structural study of water/alcohol mixtures adsorbed in MFI and MEL porosils. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Keyvanloo Z, Nakhaei Pour A, Moosavi F, Kamali Shahri SM. Molecular dynamic simulation studies of adsorption and diffusion behaviors of methanol and ethanol through ZSM-5 zeolite. J Mol Graph Model 2021; 110:108048. [PMID: 34656942 DOI: 10.1016/j.jmgm.2021.108048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Due to the importance of synthesis gas's entire conversion to methanol, the separation of methanol from unconverted synthesis gas is an industrial challenge. In this work, the influence of temperature, guest molecules concentrations (methanol and ethanol), and acid site density (Si/Al) of zeolites on the diffusion of methanol and ethanol, pure and binary mixture (80% methanol and 20% ethanol) in silicalite-1 and HZSM-5 (Si/Al = 47 and 23) were studied by using of the COMPASS force-field molecular dynamics method. Also, the adsorption of pure methanol and ethanol and binary mixture through these zeolites has been studied by using the Grand Canonical Monte Carlo (GCMC) method. The calculated adsorption rate and isosteric heat of adsorption for ethanol are lower and higher than methanol, respectively. The results of the binary mixture show that HZSM-5 (Si/Al = 23) has the lowest adsorption selectivity and most diffusion selectivity. The calculated diffusion coefficients of methanol and ethanol guest molecules decreased with rising guest molecule concentration and Si/Al-ratios. The effect of both agents was investigated by analysis of mean square displacement (MSD) and RDF diagram.
Collapse
Affiliation(s)
- Zahra Keyvanloo
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Nakhaei Pour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Moosavi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mehdi Kamali Shahri
- Department of Chemical Engineering, Pennsylvania State University, State College, PA, 16801, United States
| |
Collapse
|
7
|
Madero-Castro RM, Calero S, Yazaydin AO. The role of hydrogen bonding in the dehydration of bioalcohols in hydrophobic pervaporation membranes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Krishna R, van Baten JM. Using Molecular Simulations to Unravel the Benefits of Characterizing Mixture Permeation in Microporous Membranes in Terms of the Spreading Pressure. ACS OMEGA 2020; 5:32769-32780. [PMID: 33376915 PMCID: PMC7759009 DOI: 10.1021/acsomega.0c05269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The separation performance of microporous crystalline materials in membrane constructs is dictated by a combination of mixture adsorption and intracrystalline diffusion characteristics; the permeation selectivity S perm is a product of the adsorption selectivity S ads and the diffusion selectivity, S diff. The primary objective of this article is to gain fundamental insights into S ads and S diff by use of molecular simulations. We performed configurational-bias Monte Carlo (CBMC) simulations of mixture adsorption equilibrium and molecular dynamics (MD) simulations of guest self-diffusivities of a number of binary mixtures of light gaseous molecules (CO2, CH4, N2, H2, and C2H6) in a variety of microporous hosts of different pore dimensions and topologies. Irrespective of the bulk gas compositions and bulk gas fugacities, the adsorption selectivity, S ads, is found to be uniquely determined by the adsorption potential, Φ, a convenient and practical proxy for the spreading pressure π that is calculable using the ideal adsorbed solution theory for mixture adsorption equilibrium. The adsorption potential Φ is also a proxy for the pore occupancy and is the thermodynamically appropriate yardstick to determine the loading and composition dependences of intracrystalline diffusivities and diffusion selectivities, S diff. When compared at the same Φ, the component permeabilities, Π i for CO2, CH4, and N2, determinable from CBMC/MD data, are found to be independent of the partners in the various mixtures investigated and have practically the same values as the values for the corresponding unary permeabilities. In all investigated systems, the H2 permeability in a mixture is significantly lower than the corresponding unary value. These reported results have important practical consequences in process development and are also useful for screening of materials for use as membrane devices.
Collapse
|
9
|
Krishna R, van Baten JM. Water/Alcohol Mixture Adsorption in Hydrophobic Materials: Enhanced Water Ingress Caused by Hydrogen Bonding. ACS OMEGA 2020; 5:28393-28402. [PMID: 33163823 PMCID: PMC7643331 DOI: 10.1021/acsomega.0c04491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Microporous crystalline porous materials such as zeolites, metal-organic frameworks, and zeolitic imidazolate frameworks (ZIFs) have potential use for separating water/alcohol mixtures in fixed bed adsorbers and membrane permeation devices. For recovery of alcohols present in dilute aqueous solutions, the adsorbent materials need to be hydrophobic in order to prevent the ingress of water. The primary objective of this article is to investigate the accuracy of ideal adsorbed solution theory (IAST) for prediction of water/alcohol mixture adsorption in hydrophobic adsorbents. For this purpose, configurational bias Monte Carlo (CBMC) simulations are used to determine the component loadings for adsorption equilibrium of water/methanol and water/ethanol mixtures in all-silica zeolites (CHA, DDR, and FAU) and ZIF-8. Due to the occurrence of strong hydrogen bonding between water and alcohol molecules and attendant clustering, IAST fails to provide quantitative estimates of the component loadings and the adsorption selectivity. For a range of operating conditions, the water loading in the adsorbed phase may exceed that of pure water by one to two orders of magnitude. Furthermore, the occurrence of water-alcohol clusters moderates size entropy effects that prevail under pore saturation conditions. For quantitative modeling of the CBMC, simulated data requires the application of real adsorbed solution theory by incorporation of activity coefficients, suitably parameterized by the Margules model for the excess Gibbs free energy of adsorption.
Collapse
|
10
|
Zou C, Lin LC. Potential and Design of Zeolite Nanosheets as Pervaporation Membranes for Ethanol Extraction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changlong Zou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Li-Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Pršlja P, Lomba E, Gómez-Álvarez P, Urbič T, Noya EG. Adsorption of water, methanol, and their mixtures in slit graphite pores. J Chem Phys 2019; 150:024705. [PMID: 30646695 PMCID: PMC6910600 DOI: 10.1063/1.5078603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022] Open
Abstract
The behavior of water, methanol, and water-methanol mixtures confined in narrow slit graphite pores as a function of pore size was investigated by Monte Carlo, hybrid Monte Carlo, and Molecular Dynamics simulations. Interactions were described using TIP4P/2005 for water, OPLS/2016 for methanol, and cross interactions fitted to excess water/methanol properties over the whole range of concentrations, which provide a rather accurate description of water-methanol mixtures. As expected for hydrophobic pores, whereas pure methanol is adsorbed already from the gas phase, pure water only enters the pore at pressures well beyond bulk saturation for all pore sizes considered. When adsorbed from a mixture, however, water adsorbs at much lower pressures due to the formation of hydrogen bonds with previously adsorbed methanol molecules. For all studied compositions and pore sizes, methanol adsorbs preferentially over water at liquid-vapor equilibrium conditions. In pure components, both water and methanol are microscopically structured in layers, the number of layers increasing with pore size. This is also the case in adsorbed mixtures, in which methanol has a higher affinity for the walls. This becomes more evident as the pore widens. Diffusion of pure water is higher than that of pure methanol for all pore sizes due to the larger size of the methyl group. In mixtures, both components present similar diffusivities at all pore sizes, which is explained in terms of the coupling of molecular movements due to strong hydrogen bonding between methanol and water molecules. This is particularly evident in very narrow pores, in which pure methanol diffusion is completely impeded on the time scale of our simulations, but the presence of a small amount of water molecules facilitates alcohol diffusion following a single-file mechanism. Additionally, our results indicate that pure water diffusivities display a non-monotonous dependence of pore size, due to effects of confinement (proximity to a fluid-solid-fluid transition induced by confinement as reported in previous work) and the dynamic anomalies of water.
Collapse
Affiliation(s)
- Paulina Pršlja
- Institute of Physical Chemistry "Rocasolano," Serrano 119, E-28006 Madrid, Spain
| | - Enrique Lomba
- Institute of Physical Chemistry "Rocasolano," Serrano 119, E-28006 Madrid, Spain
| | - Paula Gómez-Álvarez
- Institute of Physical Chemistry "Rocasolano," Serrano 119, E-28006 Madrid, Spain
| | - Tomaz Urbič
- Faculty of Chemistry and Chemical technology, University of Ljubljana, Ljubljana, Slovenia
| | - Eva G Noya
- Institute of Physical Chemistry "Rocasolano," Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|