1
|
Engel S, Jeschenko PM, van Dongen M, Rose JC, Schäfer D, Bruns M, Herres-Pawlis S, Keul H, Möller M. Photo-cross-linked and pH-Switchable Soft Polymer Nanocapsules from Polyglycidyl Ethers. Macromolecules 2024; 57:707-718. [PMID: 38283123 PMCID: PMC10810002 DOI: 10.1021/acs.macromol.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Soft polymer nanocapsules and microgels, which can adapt their shape and, at the same time, sequester and release molecular payloads in response to an external trigger, are a challenging complement to vesicular structures like polymersomes. In this work, we report the synthesis of such capsules by photo-cross-linking of coumarin-substituted polyglycidyl ethers, which we prepared by Williamson etherification of epichlorohydrin (ECH) repeating units with 7-hydroxycoumarin in copolymers with tert-butyl glycidyl ether (tBGE). To control capsule size, we employed the prepolymers in an o/w miniemulsion, where they formed a gel layer at the interface upon irradiation at 365 nm by [2π + 2π] photodimerization of the coumarin groups. Upon irradiation at 254 nm, the reaction could be reversed and the gel wall could be repeatedly disintegrated and rebuilt. We further demonstrated (i) reversible hydrophilization of the gels by hydrolysis of the lactone rings in coumarin dimers as a mechanism to manipulate the permeability of the capsules and (ii) binding functional molecules as amides. Thus, the presented nanogels are remarkably versatile and can be further used as a carrier system.
Collapse
Affiliation(s)
- Stefan Engel
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, D-52074 Aachen, Germany
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Pascal M. Jeschenko
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Marcel van Dongen
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Jonas C. Rose
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Dominic Schäfer
- Institute
of Inorganic Chemistry (IAC), RWTH Aachen
University, Landoltweg
1, D-52074 Aachen, Germany
| | - Michael Bruns
- Institute
for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sonja Herres-Pawlis
- Institute
of Inorganic Chemistry (IAC), RWTH Aachen
University, Landoltweg
1, D-52074 Aachen, Germany
| | - Helmut Keul
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Martin Möller
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, D-52074 Aachen, Germany
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
2
|
Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:576. [PMID: 35159921 PMCID: PMC8839423 DOI: 10.3390/nano12030576] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (T.P.); (P.F.); (J.-A.C.)
| |
Collapse
|
3
|
Zhao Y, Luo Y. Encapsulation of Phase Change Materials via Interfacial Miniemulsion Polymerization for High Thermal Energy Storage Density. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuhai Zhao
- Yuhai Zhao, Prof. Yingwu Luo The State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Yingwu Luo
- Yuhai Zhao, Prof. Yingwu Luo The State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
4
|
Silica-Based Core-Shell Nanocapsules: A Facile Route to Functional Textile. Processes (Basel) 2021. [DOI: 10.3390/pr10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we present a surfactant-free miniemulsion approach to obtain silica-based core-shell nanocapsules with a phase change material (PCM) core via in-situ hydrolytic polycondensation of precursor hyperbranched polyethoxysiloxanes (PEOS) as silica shells. The obtained silica-based core-shell nanocapsules (PCM@SiO2), with diameters of ~400 nm and silica shells of ~14 nm, reached the maximum core content of 65%. The silica shell had basically no significant influence on the phase change behavior of PCM, and the PCM@SiO2 exhibited a high enthalpy of melt and crystallization of 123–126 J/g. The functional textile with PCM@SiO2 has been proposed with thermoregulation and acclimatization, ultraviolet (UV) resistance and improved mechanical properties. The thermal property tests have shown that the functional textile had good thermal stability. The functional textile, with a PCM@SiO2 concentration of 30%, was promising, with enthalpies of melting and crystallization of 27.7 J/g and 27.8 J/g, and UV resistance of 77.85. The thermoregulation and ultraviolet protection factor (UPF) value could be maintained after washing 10 times, which demonstrated that the functional textile had durability. With good thermoregulation and UV resistance, the multi-functional textile shows good prospects for applications in thermal comfort and as protective and energy-saving textile.
Collapse
|
5
|
Ahmadi Khoshooei M, Maham Y. Enthalpic perspective on thermodynamic equilibrium of bulk and confined liquids: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Study on a Novel Filter Media Incorporating with Core Shell Nanoencapsulated Phase Change Material: Fabrication and Evaluation. Processes (Basel) 2021. [DOI: 10.3390/pr9050731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thermal performance of filter media plays a significant effect on the filtration efficiency of baghouse, especially its tolerance of high temperature air and chemical erosion. In this study, nano-encapsulated phase change material within the silica shell (NPCMs) is synthesized through a self-assembly method based on polymer—hyperbranched precursor polyethoxysiloxane (PEOS). Filter media is fabricated by NPCMs through a facile dip-dry-cure process to enhance its thermal regulation and serving durability. Filter media acts as frame-supporting of the functional structure NPCMs. Incorporating NPCMs into filter media optimizes the microstructure and filtration efficiency of baghouse. The penetration rate was reduced from 457 × 10−4% of the control filter media to 5 × 10−4%. Meanwhile, the novel filter media lowers the temperature up to 20 °C than the surroundings. The novel filter media exhibits not only better mechanical properties, but also much less tensile strength loss after suffering 100 thermal shock cycles with simultaneous chemical exposure, from 37.58% to 20.37%. Overall, the filter media incorporated with NPCMs demonstrates excellent performances on filter efficiency, thermal regulation, and environmental endurance, which has the potential for extending lifespans and enhancing operation stability of filter bags in industrial air pollutant control.
Collapse
|
7
|
Chen Z, Zhao Y, Zhu X. Inclusion of Hydrophobic Liquids in Silica Aerogel Microparticles in an Aqueous Process: Microencapsulation and Extra Pore Creation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12230-12240. [PMID: 33656865 DOI: 10.1021/acsami.1c00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to its extraordinary properties, silica aerogel has a high potential for a number of applications; however, the state-of-the-art technique of its production involves cost-intensive supercritical drying or solvent exchange with a nonpolar solvent. Here, we report on a pure aqueous process for the preparation of silica aerogel particles as well as silica hollow nanoparticles, which is based on the self-assembly of amphiphilic silica precursor polymers, PEGylated poly(ethoxysiloxanes) (PEG-PEOS), in water and subsequent conversion under basic conditions. Addition of a hydrophobic organic liquid to the aqueous dispersions of PEG-PEOS results in the spontaneous formation of oil-in-water emulsions, which resemble the self-assembled structures of PEG-PEOS in water swollen by the organic liquid. The products of basic conversion of the emulsions are silica aerogel particles as well as hollow nanocapsules loaded with organic liquid. Remarkably, the oil phase significantly increases the porosity of the aerogel particles by acting as a porogen; meanwhile, it only decreases the silica shell thickness of the hollow nanoparticles. During freeze-drying, the aerogel particles, acting as matrix-type microcapsules, can efficiently retain the encapsulated volatile hydrophobic liquid; at the same time, the liquid is completely evaporated from the hollow particles (core-shell-type microcapsules). The encapsulation efficiency of hydrophobic liquids in the aerogel particles can reach as high as 99% after drying. The barrier property of the aerogel particles is higher with PEG-PEOS of lower PEGylation degrees due to bigger particle size and higher meso- and microporosity. This work opens a new avenue to prepare particulate silica aerogel for different promising applications including microencapsulation.
Collapse
Affiliation(s)
- Zhi Chen
- DWI-Leibniz-Institute for Interactive Materials e.V. and Institute for Technical and Macromolecular Chemistry of RWTH Aachen University, Forckenbeckstraße 50, Aachen 52056, Germany
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Yongliang Zhao
- Shanghai Dilato Materials Co., Ltd, Guohe Road 60, Shanghai 200433, P. R. China
| | - Xiaomin Zhu
- DWI-Leibniz-Institute for Interactive Materials e.V. and Institute for Technical and Macromolecular Chemistry of RWTH Aachen University, Forckenbeckstraße 50, Aachen 52056, Germany
| |
Collapse
|
8
|
Sharma J, Polizos G, Hun D, Nawaz K, Sahore R. Low cost and scalable method for modifying surfaces of hollow particles from hydrophilic to hydrophobic. RSC Adv 2020; 10:31065-31069. [PMID: 35520683 PMCID: PMC9056372 DOI: 10.1039/d0ra06114j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Hydrophobic hollow silica particles are desirable for several applications such as hydrophobic coatings, thermal insulation, and thermally resistant insulative paints. However, converting hydrophilic particles into hydrophobic particles without compromising their structural integrity is challenging. In this work, we present a low cost strategy to modify the surface of hollow silica particles from hydrophilic to hydrophobic without compromising their structural integrity.
Collapse
Affiliation(s)
- Jaswinder Sharma
- Roll-to-Roll Manufacturing Group, Energy and Transportation Science Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA +1-865-241-2333
- Building Technologies Research & Integration Center, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Georgios Polizos
- Roll-to-Roll Manufacturing Group, Energy and Transportation Science Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA +1-865-241-2333
| | - Diana Hun
- Building Technologies Research & Integration Center, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Kashif Nawaz
- Building Technologies Research & Integration Center, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Ritu Sahore
- Roll-to-Roll Manufacturing Group, Energy and Transportation Science Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA +1-865-241-2333
| |
Collapse
|
9
|
Sharma J, Polizos G. Hollow Silica Particles: Recent Progress and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1599. [PMID: 32823994 PMCID: PMC7466709 DOI: 10.3390/nano10081599] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/17/2023]
Abstract
Hollow silica particles (or mesoporous hollow silica particles) are sought after for applications across several fields, including drug delivery, battery anodes, catalysis, thermal insulation, and functional coatings. Significant progress has been made in hollow silica particle synthesis and several new methods are being explored to use these particles in real-world applications. This review article presents a brief and critical discussion of synthesis strategies, characterization techniques, and current and possible future applications of these particles.
Collapse
Affiliation(s)
- Jaswinder Sharma
- Roll-to-Roll Manufacturing Group, Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
10
|
Han X, Kong T, Zhu P, Wang L. Microfluidic Encapsulation of Phase-Change Materials for High Thermal Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8165-8173. [PMID: 32575990 DOI: 10.1021/acs.langmuir.0c01171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microencapsulation of phase-change materials (PCMs) can prevent leakage of PCMs and enhance heat transfer with an increased surface area to volume ratio and thus benefit their pragmatic applications. However, the available methods have difficulties in microencapsulating PCMs with a tunable size, structure, and composition at will, thereby failing to accurately and flexibly tailor the thermal properties of microencapsulated PCMs (MEPCMs). Here, the microfluidic encapsulation of PCMs was presented for precisely fabricating MEPCMs with tunable thermal properties. The versatile fabrication of both organic and inorganic MEPCMs was demonstrated with high monodispersity, energy storage capacity, encapsulation efficiency, thermal stability, reliability, and heat charging and discharging rates. Notably, the inorganic MEPCMs exhibit an energy storage capacity of 269.3 J/g and a charging rate of 294.7 J/(g min), surpassing previously reported values. Owing to their high thermal performance, MEPCMs have been used for anticounterfeit applications. Droplet-based microfluidic fabrication opens up a new avenue for versatile fabrication of MEPCMs with well-tailored thermal properties, thus benefitting their applications.
Collapse
Affiliation(s)
- Xing Han
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou 310000, Zhejiang, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 51800,China
| | - Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou 310000, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou 310000, Zhejiang, China
| |
Collapse
|
11
|
Expanded Graphite/Paraffin/Silicone Rubber as High Temperature Form-stabilized Phase Change Materials for Thermal Energy Storage and Thermal Interface Materials. MATERIALS 2020; 13:ma13040894. [PMID: 32079266 PMCID: PMC7078722 DOI: 10.3390/ma13040894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/30/2022]
Abstract
In this work, expanded graphite/paraffin/silicone rubber composite phase-change materials (PCMs) were prepared by blending the expanded graphite (EG), paraffin wax (PW) and silicone rubber (SR) matrix. It has been shown that PW fully penetrates into the three dimensional (3D) pores of EG to form the EG/PW particles, which are sealed by SR and evenly embedded in the SR matrix. As a result of the excellent thermal stability of SR and the capillary force from the 3D pores of EG, the EG/PW/SR PCMs are found to have good shape stability and high reliability. After being baked in an oven at 150 °C for 24 h, the shape of the EG/PW/SR PCMs is virtually unchanged, and their weight loss and latent heat drop are only 7.91 wt % and 11.3 J/g, respectively. The latent heat of the EG/PW/SR composites can reach up to 43.6 and 41.8 J/g for the melting and crystallizing processes, respectively. The super cooling of PW decreased from 4.2 to 2.4 due to the heterogeneous nucleation on the large surface of EG and the sealing effect of the SR. Meanwhile, the thermal conductivity of the EG/PW/SR PCMs reaches 0.56 W·m−1·K−1, which is about 2.8 times and 3.73 times of pure PW and pristine SR, respectively. The novel EG/PW/SR PCMs with superior shape and thermal stabilities will have a potential application in heat energy storage and thermal interface materials (TIM) for electronic devices.
Collapse
|
12
|
Yu X, Li Y, Yin X, Wang X, Han Y, Si Y, Yu J, Ding B. Corncoblike, Superhydrophobic, and Phase-Changeable Nanofibers for Intelligent Thermoregulating and Water-Repellent Fabrics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39324-39333. [PMID: 31566350 DOI: 10.1021/acsami.9b12934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The comfort and protection of clothes are critically important for human well-being in life; however, constructing multifunctional fabrics with excellent thermoregulating and water-repellent performance still presents an exciting scientific challenge and a significant technological advancement. Therefore, we report a novel and straightforward methodology to fabricate corncoblike and phase-changeable nanofibers by incorporating n-octadecane phase change capsules (PCCs) for creating water-repellent and thermoregulating nanofibrous membranes. This strategy causes PCC to be uniformly distributed on the nanofibers to form a unique corncoblike structure, preventing the abscission of PCC and the leakage of the phase change ingredient (n-octadecane). Besides, the resultant nanofibrous membranes are endowed with hierarchical roughness, small pore size, and energy storage/release capacity in response to environmental changes. As a consequence, the nanofibrous membranes present prominent water repellence with superhydrophobicity (a water contact angle of 153°) and a high hydrostatic pressure of 84 kPa, robust mechanical properties with a tensile strength of 9.2 MPa, as well as excellent hybrid active-passive thermal regulation with a water vapor transmittance rate of 11.4 kg m-2 d-1 and a high phase change enthalpy of 74 J g-1 after 50 heating/cooling cycles, indicating them to be an exceptional candidate for personal protection and thermal management.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yang Li
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Yuhao Han
- China University of Geosciences , Wuhan 430074 , China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
13
|
Xu L, Chu Z, Wang H, Cai L, Tu Z, Liu H, Zhu C, Shi H, Pan D, Pan J, Fei X. Electrostatically Assembled Multilayered Films of Biopolymer Enhanced Nanocapsules for on-Demand Drug Release. ACS APPLIED BIO MATERIALS 2019; 2:3429-3438. [DOI: 10.1021/acsabm.9b00381] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Li Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zihan Chu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hailong Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lawrence Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunyin Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Donghui Pan
- Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jia Pan
- Novo Nordisk Research Center−Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Xiang Fei
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
14
|
Synthesis of Uniform Alkane-Filled Capsules with a High Under-Cooling Performance and Their Real-Time Optical Properties. Polymers (Basel) 2019; 11:polym11020199. [PMID: 30960183 PMCID: PMC6418806 DOI: 10.3390/polym11020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
Abstract
Encapsulating under-cooling materials has been a promising strategy to address the compatibility issue with a surrounding matrix. Herein, we present the synthesis of a uniform alkane-infilled capsule system that shows obvious under-cooling properties. As demonstrating examples, n-hexadecane was selected as a liquid alkane and n-eicosane as a solid in our systems as core materials via in-situ polymerization, respectively. The under-cooling properties of capsules were investigated using differential scanning calorimetry, real-time optical observations with two polarizers, and molecular modeling. The n-hexadecane encapsulated capsules exhibited a large under-cooling temperature range of 20 °C between melt and crystallization, indicating potential applications for structure-transformation energy storage. In addition, molecular modeling calculations confirmed that the solid forms of n-hexadecane and n-eicosane are more stable than their liquid forms. From liquid to solid form, the n-hexadecane and n-eicosane release energies were 4.63 × 10³ and 4.95 × 10³ J·g-1, respectively.
Collapse
|