1
|
Li S, Yang L, Zhao Z, Wang J, Lv H, Yang X. Fabrication of mechanical skeleton of small-diameter vascular grafts via rolling on water surface. Biomed Mater 2023; 18. [PMID: 36731137 DOI: 10.1088/1748-605x/acb89a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Mimicking the multilayered structure of blood vessels and constructing a porous inner surface are two effective approaches to achieve mechanical matching and rapid endothelialization to reduce occlusion in small-diameter vascular grafts. However, the fabrication processes are complex and time consuming, thus complicating the fabrication of personalized vascular grafts. A simple and versatile strategy is proposed to prepare the skeleton of vascular grafts by rolling self-adhesive polymer films. These polymer films are directly fabricated by dropping a polymer solution on a water surface. For the tubes, the length and wall thickness are controlled by the rolling number and position of each film, whereas the structure and properties are tailored by regulating the solution composition. Double-layer vascular grafts (DLVGs) with microporous inner layers and impermeable outer layers are constructed; a microporous layer is formed by introducing a hydrophilic polymer into a polyurethane (PU) solution. DLVGs exhibit a J-shaped stress-strain deformation profile and compliance comparable to that of coronary arteries, sufficient suture retention strength and burst pressure, suitable hemocompatibility, significant adhesion, and proliferation of human umbilical vein endothelial cells. Freshly prepared PU tubes exhibit good cytocompatibility. Thus, this strategy demonstrates potential for rapid construction of small-diameter vascular grafts for individual customization.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Zijian Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jie Wang
- Huangpu Institute of Advanced Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
2
|
Generation of Fermat's spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system. Nat Commun 2022; 13:7206. [PMID: 36418301 PMCID: PMC9684484 DOI: 10.1038/s41467-022-34368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
The solutal Marangoni effect is attracting increasing interest because of its fundamental role in many isothermal directional transport processes in fluids, including the Marangoni-driven spreading on liquid surfaces or Marangoni convection within a liquid. Here we report a type of continuous Marangoni transport process resulting from Marangoni-driven spreading and Marangoni convection in an aqueous two-phase system. The interaction between a salt (CaCl2) and an anionic surfactant (sodium dodecylbenzenesulfonate) generates surface tension gradients, which drive the transport process. This Marangoni transport consists of the upward transfer of a filament from a droplet located at the bottom of a bulk solution, coiling of the filament near the surface, and formation of Fermat's spiral patterns on the surface. The bottom-up coiling of the filament, driven by Marangoni convection, may inspire automatic fiber fabrication.
Collapse
|
3
|
Chen B, Shi C, Xiong S, Wu K, Yang Y, Mu W, Li X, Yang Y, Shen X, Peng S. Insights into the spontaneous multi-scale supramolecular assembly in an ionic liquid-based extraction system. Phys Chem Chem Phys 2022; 24:25950-25961. [PMID: 36263674 DOI: 10.1039/d2cp03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we report a four-step mechanism for the spontaneous multi-scale supramolecular assembly (MSSA) process in a two-phase system concerning an ionic liquid (IL). The complex ions, elementary building blocks (EBBs), [EBB]n clusters and macroscopic assembly (MA) sphere are formed step by step. The porous large-sized [EBB]n clusters in the glassy state can hardly stay in the IL phase and they transfer to the IL-water interface due to both electroneutrality and amphiphilicity. Then, the clusters undergo random collision in the interface driven by the Marangoni effect and capillary force thereafter. Finally, a single MA sphere can be formed owing to supramolecular interactions. To our knowledge, this is the first example realizing spontaneous whole-process supramolecular assembly covering microscopic, mesoscopic and macroscopic scales in extraction systems. The concept of multi-scale selectivity (MSS) is therefore suggested and its mechanism is revealed. The selective separation and solidification of metal ions can be realized in a MSSA-based extraction system depending on MSS. In addition, insights into the physicochemical characteristics of ILs from microscopic, mesoscopic to macroscopic scales are provided, and especially, the solvation effect of ILs on the large-sized clusters leading to the phase-splitting is examined. It is quite important that the polarization of uranyl in its complex, the growing of uranyl clusters in an IL as well as the glassy material of uranyl are investigated systematically on the basis of both experiment and theoretical calculations in this work.
Collapse
Affiliation(s)
- Baihua Chen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Ce Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Shijie Xiong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Kaige Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Wanjun Mu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Xingliang Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Xinghai Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Shuming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| |
Collapse
|
4
|
Dong M, Jiao D, Zheng Q, Wu ZL. Recent progress in fabrications and applications of functional hydrogel films. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
5
|
Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings. SENSORS 2021; 21:s21196671. [PMID: 34640991 PMCID: PMC8511991 DOI: 10.3390/s21196671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
The photothermocapillary (PTC) effect is a deformation of the free surface of a thin liquid layer on a solid material that is caused by the dependence of the coefficient of surface tension on temperature. The PTC effect is highly sensitive to variations in the thermal conductivity of solids, and this is the basis for PTC techniques in the non-destructive testing of solid non-porous materials. These techniques analyze thermal conductivity and detect subsurface defects, evaluate the thickness of thin varnish-and-paint coatings (VPC), and detect air-filled voids between coatings and metal substrates. In this study, the PTC effect was excited by a “pumped” Helium-Neon laser, which provided the monochromatic light source that is required to produce optical interference patterns. The light of a small-diameter laser beam was reflected from a liquid surface, which was contoured by liquid capillary action and variations in the surface tension. A typical contour produces an interference pattern of concentric rings with a bright and wide outer ring. The minimal or maximal diameter of this pattern was designated as the PTC response. The PTC technique was evaluated to monitor the thickness of VPCs on thermally conductive solid materials. The same PTC technique has been used to measure the thickness of air-filled delaminations between a metal substrate and a coating.
Collapse
|
6
|
Tian Y, Du C, Liu B, Qiu HN, Zhang X, Wu ZL, Zheng Q. Tough and fluorescent hydrogels composed of poly(hydroxyurethane) and poly(stearyl acrylate‐
co
‐acrylic acid) with hydrophobic associations and hydrogen bonds as the physical crosslinks. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ye Tian
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- College of Mechanical Engineering Zhejiang University of Technology Hangzhou China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province Zhejiang University of Technology Hangzhou China
| | - Cong Du
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Bin Liu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Hao Nan Qiu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xing‐Hong Zhang
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
7
|
Ghasemzadeh H, Afraz S, Moradi M, Hassanpour S. Antimicrobial chitosan-agarose full polysaccharide silver nanocomposite films. Int J Biol Macromol 2021; 179:532-541. [PMID: 33662420 DOI: 10.1016/j.ijbiomac.2021.02.192] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
The antibacterial and biocompatible films have attracted much attention due to their wide range of applications. Although a lot of work has been done in this area, research in this field is still very active and associated with the continuous development of new materials. In the present study full polysaccharide chitosan-agarose (CS-AG) films were produced by reaction of chitosan with periodate activated agarose, followed by reductive amination. Activated agarose was prepared by periodate oxidation of agarose, and then applied as a crosslinking agent to form a new polymeric network. The structure of periodate activated agarose was studied by nuclear magnetic resonances spectroscopy (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Rheological experiments showed that the viscosity of agarose solution changes rapidly by addition of periodate to the solution. Swelling, deswelling, and gel content of the films were determined at different pH. Chitosan-agarose silver nanocomposite (CS-AG/n-Ag) films were prepared by loading silver ions and subsequent reduction. The CS-AG/n-Ag films were characterized by FT-IR, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM).Transmission electron microscopy (TEM) image showed that the size of silver nanoparticles was about 2-7 nm. The bactericidal capacities (MBC/MIC) of the CS-AG/Ag films for Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) were obtained 2.0, 1.0 and 2.0, respectively. The results demonstrate that the CS-AG/n-Ag films have good antibacterial activity against both the gram-negative and the gram-positive bacteria which make them suitable for food packaging and wound healing applications.
Collapse
Affiliation(s)
- Hossein Ghasemzadeh
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran.
| | - Shiravan Afraz
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | - Mohadeseh Moradi
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| | - Samira Hassanpour
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
8
|
Tregouet C, Saint-Jalmes A. Stability of a directional Marangoni flow. SOFT MATTER 2020; 16:8933-8939. [PMID: 32896855 DOI: 10.1039/d0sm01347a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Marangoni flows result from surface-tension gradients, and these flows occur over finite distances on the surface, but the subsequent secondary flows can be observed on much larger lengthscales. These flows play major roles in various phenomena, from foam dynamics to microswimmer propulsion. We show here that if a Marangoni flow of soluble surfactants is confined laterally, the flow forms an inertial surface jet. A full picture of the flows on the surface is exhibited, and the velocity profile of the jet is predicted analytically, and is successfully compared with the experimental measurements. Moreover, this straight jet eventually destabilizes into meanders. A quantitative comparison between the theory and our experimental observations yields a very good agreement in terms of critical wavelengths. The characterization and understanding of the 2D flows generated by confined Marangoni spreading is a first step to understand the role of inertial effects in the Marangoni flows with and without confinement.
Collapse
Affiliation(s)
- Corentin Tregouet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| | - Arnaud Saint-Jalmes
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| |
Collapse
|