1
|
Gilinsky SD, Jung DN, Futia GL, Zohrabi M, Welton TA, Supekar OD, Gibson EA, Restrepo D, Bright VM, Gopinath JT. Tunable liquid lens for three-photon excitation microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3285-3300. [PMID: 38855666 PMCID: PMC11161341 DOI: 10.1364/boe.516956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate a novel electrowetting liquid combination using a room temperature ionic liquid (RTIL) and a nonpolar liquid, 1-phenyl-1-cyclohexene (PCH) suitable for focus-tunable 3-photon microscopy. We show that both liquids have over 90% transmission at 1300 nm over a 1.1 mm pathlength and an index of refraction contrast of 0.123. A lens using these liquids can be tuned from a contact angle of 133 to 48° with applied voltages of 0 and 60 V, respectively. Finally, a three-photon imaging system including an RTIL electrowetting lens was used to image a mouse brain slice. Axial scans taken with an electrowetting lens show excellent agreement with images acquired using a mechanically scanned objective.
Collapse
Affiliation(s)
- Samuel D. Gilinsky
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Diane N. Jung
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Greg L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Mo Zohrabi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Tarah A. Welton
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Omkar D. Supekar
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
2
|
Günther-Müller S, Azizy R, Strehle S. Droplet Motion Driven by Liquid Dielectrophoresis in the Low-Frequency Range. MICROMACHINES 2024; 15:151. [PMID: 38276850 PMCID: PMC11154384 DOI: 10.3390/mi15010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Electrohydrodynamic wetting manipulation plays a major role in modern microfluidic technologies such as lab-on-a-chip applications and digital microfluidics. Liquid dielectrophoresis (LDEP) is a common driving mechanism, which induces hydrodynamic motion in liquids by the application of nonhomogeneous electrical fields. Among strategies to analyze droplet movement, systematic research on the influence of different frequencies under AC voltage is missing. In this paper, we therefore present a first study covering the motion characteristics of LDEP-driven droplets of the dielectric liquids ethylene glycol and glycerol carbonate in the driving voltage frequency range from 50 Hz to 1600 Hz. A correlation between the switching speed of LDEP-actuated droplets in a planar electrode configuration and the frequency of the applied voltage is shown. Hereby, motion times of different-sized droplets could be reduced by up to a factor of 5.3. A possible excitation of the droplets within their range of eigenfrequencies is investigated using numerical calculations. The featured fluidic device is designed using larger-sized electrodes rather than typical finger or strip electrodes, which are commonly employed in LDEP devices. The influence of the electrode shape is considered simulatively by studying the electric field gradients.
Collapse
Affiliation(s)
- Sarah Günther-Müller
- Institute of Micro- and Nanotechnologies (IMN) MacroNano®, Microsystems Technology Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany; (R.A.); (S.S.)
| | | | | |
Collapse
|
3
|
Gilinsky SD, Zohrabi M, Lim WY, Supekar OD, Bright VM, Gopinath JT. Fabrication and characterization of a two-dimensional individually addressable electrowetting microlens array. OPTICS EXPRESS 2023; 31:30550-30561. [PMID: 37710595 PMCID: PMC10544957 DOI: 10.1364/oe.497992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
We demonstrate a two-dimensional, individually tunable electrowetting microlens array fabricated using standard microfabrication techniques. Each lens in our array has a large range of focal tunability from -1.7 mm to -∞ in the diverging regime, which we verify experimentally from 0 to 75 V for a device coated in Parylene C. Additionally, each lens can be actuated to within 1% of their steady-state value within 1.5 ms. To justify the use of our device in a phase-sensitive optical system, we measure the wavefront of a beam passing through the center of a single lens in our device over the actuation range and show that these devices have a surface quality comparable to static microlens arrays. The large range of tunability, fast response time, and excellent surface quality of these devices open the door to potential applications in compact optical imaging systems, transmissive wavefront shaping, and beam steering.
Collapse
Affiliation(s)
- Samuel D. Gilinsky
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mo Zohrabi
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wei Yang Lim
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Omkar D. Supekar
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Miscles EJ, Lim WY, Supekar OD, Zohrabi M, Gopinath JT, Bright VM. Axisymmetrical resonance modes in an electrowetting optical lens. APPLIED PHYSICS LETTERS 2023; 122:201106. [PMID: 37214761 PMCID: PMC10195114 DOI: 10.1063/5.0141787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023]
Abstract
Electrowetting-based adaptive optics are of great interest for applications ranging from confocal microscopy to LIDAR, but the impact of low-frequency mechanical vibration on these devices remains to be studied. We present a simple theoretical model for predicting the resonance modes induced on the liquid interface in conjunction with a numerical simulation. We experimentally confirm the resonance frequencies by contact angle modulation. They are found to be in excellent agreement with the roots of the zero-order Bessel functions of the first kind. Next, we experimentally verify that external axial vibration of an electrowetting lens filled with density mismatched liquids (Δρ = 250 kg/m3) will exhibit observable Bessel modes on the liquid-liquid interface. An electrowetting lens filled with density matched liquids (Δρ = 4 kg/m3) is robust to external axial vibration and is shown to be useful in mitigating the effect of vibrations in an optical system.
Collapse
Affiliation(s)
- Eduardo J. Miscles
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Wei Yang Lim
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | - Mo Zohrabi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
5
|
Zhong Y, Yu H, Zhou P, Wen Y, Zhao W, Zou W, Luo H, Wang Y, Liu L. In Situ Electrohydrodynamic Jet Printing-Based Fabrication of Tunable Microlens Arrays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39550-39560. [PMID: 34378373 DOI: 10.1021/acsami.1c06205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tunable microlens arrays (MLAs) with controllable focal lengths have been extensively used in optical sensors, biochips, and electronic devices. The commonly used method is electrowetting on dielectric (EWOD) that controls the contact angle of the microlens to adjust the focal length. However, the fabrication of tunable MLAs at the microscale remains a challenge because the size of MLAs is limited by the external electrodes of EWOD. In this study, a highly integrated planar annular microelectrode array was proposed to achieve an electrowetting tunable MLA. The planar microelectrode was fabricated by electrohydrodynamic jet (E-jet) printing and the liquid microlens was then deposited in situ on the microelectrode. This method could realize 36 tunable liquid microlenses with an average diameter of 24 μm in a 320 × 320 μm2 plane. The fabricated tunable MLAs with higher integration levels and smaller sizes can be beneficial for cell imaging, optofluidic systems, and microfluidic chips.
Collapse
Affiliation(s)
- Ya Zhong
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peilin Zhou
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Yangdong Wen
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiu Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wuhao Zou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Luo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
6
|
Lee J, Lee J, Won YH. Image stitching using an electrowetting-based liquid prism with a fabrication method. OPTICS EXPRESS 2021; 29:729-739. [PMID: 33726303 DOI: 10.1364/oe.414236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
In this paper, we propose a new method for image stitching using an electrowetting-based liquid prism. Several images were obtained by adjusting the voltages applied to four sidewalls of the liquid prism, and a panoramic image was achieved through an image stitching algorithm. The relationship between the tilting angle of the liquid prism and the normal vector of the liquid-liquid interface was presented. Novel fabrication method has been proposed to improve the performance of the liquid prism, including the addition of a new structure to prevent oil isolation, plastic chamber material, plastic laser cutting, and oil selection. The fabricated liquid prism has a size of 5 × 5 × 8 mm, a maximum beam steering angle of ±10.5 °, a response time of 19.1 ms, and a resolution of 14.25 lp/mm. The required number of images according to the overlapping area was presented through the simulation, and the image stitching using two or three images was demonstrated.
Collapse
|
7
|
Bonart H, Kahle C, Repke JU. Optimal Control of Droplets on a Solid Surface Using Distributed Contact Angles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8894-8903. [PMID: 32628852 DOI: 10.1021/acs.langmuir.0c01242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the shape and position of moving and pinned droplets on a solid surface is an important feature often found in microfluidic applications. However, automating them, e.g., for high-throughput applications, rarely involves model-based optimal control strategies. In this work, we demonstrate the optimal control of both the shape and position of a droplet sliding on an inclined surface. This basic test case is a fundamental building block in plenty of microfluidic designs. The static contact angle between the solid surface, the surrounding gas, and the liquid droplet serves as the control variable. By using several control patches, e.g., like that performed in electrowetting, the contact angles are allowed to vary in space and time. In computer experiments, we are able to calculate mathematically optimal contact angle distributions using gradient-based optimization. The dynamics of the droplet are described by the Cahn-Hilliard-Navier-Stokes equations. We anticipate our demonstration to be the starting point for more sophisticated optimal design and control concepts.
Collapse
Affiliation(s)
- Henning Bonart
- Technische Universität Berlin, Process Dynamics and Operations Group, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Kahle
- Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Jens-Uwe Repke
- Technische Universität Berlin, Process Dynamics and Operations Group, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
8
|
Lim WY, Zohrabi M, Gopinath JT, Bright VM. Calibration and characteristics of an electrowetting laser scanner. IEEE SENSORS JOURNAL 2020; 20:3496-3503. [PMID: 33746623 PMCID: PMC7977153 DOI: 10.1109/jsen.2019.2959792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a calibration method to correct for fabrication variations and optical misalignment in a two-dimensional electrowetting scanner. These scanners are an attractive option due to being transmissive, nonmechanical, having a large scan angle (±13.7°), and low power consumption (μW). Fabrication imperfections lead to non-uniform deposition of the dielectric or hydrophobic layer which results in actuation inconsistency of each electrode. To demonstrate our calibration method, we scan a 5 × 5 grid target using a four-electrode electrowetting prism and observe a pincushion type optical distortion in the imaging plane. Zemax optical simulations verify that the symmetric distortion is due to the projection of a radial scanning surface onto a flat imaging plane, while in experiment we observe asymmetrical distortion due to optical misalignment and fabrication imperfections. By adjusting the actuation voltages through an iterative Delaunay triangulation interpolation method, the distortion is corrected and saw an improvement in the mean error across 25 grid points from 43 μm (0.117°) to 10 μm (0.027°).
Collapse
Affiliation(s)
- Wei Yang Lim
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309 USA
| | - Mo Zohrabi
- Department of Electrical Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Juliet T Gopinath
- Department of Electrical Engineering and Department of Physics, University of Colorado, Boulder, CO 80309 USA
| | - Victor M Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309 USA
| |
Collapse
|
9
|
Zohrabi M, Yang Lim W, Bright VM, Gopinath JT. High extinction ratio, low insertion loss, optical switch based on an electrowetting prism. OPTICS EXPRESS 2020; 28:5991-6001. [PMID: 32225857 PMCID: PMC7347523 DOI: 10.1364/oe.381565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 05/13/2023]
Abstract
An optical switch based on an electrowetting prism coupled to a multimode fiber has demonstrated a large extinction ratio with speeds up to 300 Hz. Electrowetting prisms provide a transmissive, low power, and compact alternative to conventional free-space optical switches, with no moving parts. The electrowetting prism performs beam steering of ±3° with an extinction ratio of 47 dB between the ON and OFF states and has been experimentally demonstrated at scanning frequencies of 100-300 Hz. The optical design is modeled in Zemax to account for secondary rays created at each surface interface (without scattering). Simulations predict 50 dB of extinction, in good agreement with experiment.
Collapse
Affiliation(s)
- Mo Zohrabi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Wei Yang Lim
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
10
|
Song X, Zhang H, Li D, Jin Q, Jia D, Liu T, Wang C. Liquid Lens with Large Focal Length Tunability Fabricated in a Polyvinyl Chloride/Dibutyl Phthalate Gel Tube. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1430-1436. [PMID: 31971397 DOI: 10.1021/acs.langmuir.9b03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Usually, an adaptive liquid lens only has a positive focal length, which severely limits its application in imaging and other fields. Therefore, a liquid lens consisting of polyvinyl chloride/dibutyl phthalate (PVC/DBP) gel, glycerol solution, and a glass substrate is proposed to extend the dynamic focal length range. A spherical tube is formed by the PVC/DBP gel under the effect of hydrostatic and surface tensions, which is used to restrict the glycerol solution. The PVC/DBP gel does not deform under the effect of an electric field, so the tangent line at the three-phase junction changes with the change of contact angle, which leads to an enlargement of the dynamic focal length range. At different voltage values, the proposed lens can be configured to work in three different schemes, namely, converging light, nondeflecting light, and diverging light. Here, the proposed lens has high imaging quality; the resolution is better than 114 lp/mm. A lens with a reconfigurable focal length holds great promise in diverse applications such as fluorescence detection, beam shaping, and adaptive optics.
Collapse
Affiliation(s)
- Xiaomin Song
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300000 , China
- Key Laboratory of Optoelectronics Information Technical Science , EMC, Tianjin 30000 , China
| | - Hongxia Zhang
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300000 , China
- Key Laboratory of Optoelectronics Information Technical Science , EMC, Tianjin 30000 , China
| | - Dongyang Li
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300000 , China
- Key Laboratory of Optoelectronics Information Technical Science , EMC, Tianjin 30000 , China
| | - Qingwen Jin
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300000 , China
- Key Laboratory of Optoelectronics Information Technical Science , EMC, Tianjin 30000 , China
| | - Dagong Jia
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300000 , China
- Key Laboratory of Optoelectronics Information Technical Science , EMC, Tianjin 30000 , China
| | - Tiegen Liu
- College of Precision Instrument and Optoelectronics Engineering , Tianjin University , Tianjin 300000 , China
- Key Laboratory of Optoelectronics Information Technical Science , EMC, Tianjin 30000 , China
| | - Chao Wang
- School of Engineering and Digital Arts , University of Kent , Canterbury , Kent CT2 7NT , U. K
| |
Collapse
|
11
|
Zohrabi M, Lim WY, Cormack RH, Supekar OD, Bright VM, Gopinath JT. Lidar system with nonmechanical electrowetting-based wide-angle beam steering. OPTICS EXPRESS 2019; 27:4404-4415. [PMID: 30876059 PMCID: PMC6410924 DOI: 10.1364/oe.27.004404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 05/27/2023]
Abstract
A light detection and ranging (lidar) system with ±90° of steering based on an adaptive electrowetting-based prism for nonmechanical beam steering has been demonstrated. Electrowetting-based prisms provide a transmissive, low power, and compact alternative to conventional adaptive optics as a nonmechanical beam scanner. The electrowetting prism has a steering range of ±7.8°. We demonstrate a method to amplify the scan angle to ±90° and perform a one-dimensional scan in a lidar system.
Collapse
Affiliation(s)
- Mo Zohrabi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309,
USA
| | - Wei Yang Lim
- Department of Mechanical Engineering, University of Colorado Boulder, Colorado 80309,
USA
| | - Robert H. Cormack
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309,
USA
| | - Omkar D. Supekar
- Department of Mechanical Engineering, University of Colorado Boulder, Colorado 80309,
USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado Boulder, Colorado 80309,
USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309,
USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309,
USA
| |
Collapse
|