1
|
Kamigaki K, Aoshima S, Kanazawa A. Cationic Alternating Copolymerization of Vinyl Esters and 3-Alkoxyphthalides: Side Chain-Crosslinkable Polymers for Acid-Degradable Single-Chain Nanoparticles. ACS Macro Lett 2024; 13:754-760. [PMID: 38819236 DOI: 10.1021/acsmacrolett.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Cationic copolymerization of vinyl acetate and 3-alkoxyphthalides (ROPTs) was demonstrated to proceed using GaCl3 as a Lewis acid catalyst. Both monomers did not undergo homopolymerization, while copolymerization smoothly occurred via the crossover reactions, resulting in alternating copolymers with molecular weights of over 104. The obtained copolymers could be degraded by acid due to the cleavage of the diacyloxymethine moieties, which were derived from the crossover reactions from vinyl acetate to ROPT, in the main chain. An advantage of not radical but cationic copolymerization of vinyl esters was exerted by copolymerizations of radically reactive group-containing vinyl esters with ROPTs. For example, vinyl cinnamate was successfully copolymerized with an ROPT by the cationic mechanism, while keeping the cinnamoyl groups intact. The obtained alternating copolymer was subjected to a photodimerization reaction of the cinnamoyl groups in the side chains, resulting in an acid-degradable single-chain nanoparticle via the intramolecular crosslinking reactions.
Collapse
Affiliation(s)
- Kyonosuke Kamigaki
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Vo Y, Nothling MD, Raveendran R, Cao C, Stenzel MH. Effects of Drug Conjugation on the Biological Activity of Single-Chain Nanoparticles. Biomacromolecules 2024; 25:675-689. [PMID: 38266160 DOI: 10.1021/acs.biomac.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The field of single-chain nanoparticles (SCNPs) continues to mature, and an increasing range of reports have emerged that explore the application of these small nanoparticles. A key application for SCNPs is in the field of drug delivery, and recent work suggests that SCNPs can be readily internalized by cells. However, limited attention has been directed to the delivery of small-molecule drugs using SCNPs. Moreover, studies on the physicochemical effects of drug loading on SCNP performance is so far missing, despite the accepted view that such small nanoparticles should be significantly affected by the drug loading content. To address this gap, we prepared a library of SCNPs bearing different amounts of a covalently conjugated therapeutic drug-sulfasalazine (SSZ). We evaluated the impact of the conjugated drug loading on both the synthesis and biological activity of SCNPs on pancreatic cancer cells (AsPC-1). Our results reveal that covalent drug conjugation to the side chains of the SCNP polymer precursor interferes with chain collapse and cross-linking, which demands optimization of reaction conditions to reach high degrees of cross-linking efficiencies. Small-angle neutron scattering and diffusion-ordered spectroscopy nuclear magnetic resonance (DOSY NMR) analyses reveal that SCNPs with a higher drug loading display larger sizes and looser structures, as well as increased hydrophobicity associated with a higher SSZ content. Increased SSZ loading led to reduced cellular uptake when assessed in vitro, whereby SCNP aggregation on the surface of AsPC-1 cells led to reduced toxicity. This work highlights the effects of drug loading on the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Mitchell D Nothling
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
3
|
Moinuddin M, Tripathy M. Effect of Architecture and Topology on the Self-Assembly of Polymer-Grafted Nanoparticles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md Moinuddin
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, Maharashtra, India
| | - Mukta Tripathy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, Maharashtra, India
| |
Collapse
|
4
|
Nam J, Kwon S, Yu YG, Seo HB, Lee JS, Lee WB, Kim Y, Seo M. Folding of Sequence-Controlled Graft Copolymers to Subdomain-Defined Single-Chain Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiyun Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Guen Yu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ho-Bin Seo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
6
|
Milton M, Deng R, Mann A, Wang C, Tang D, Weck M. Secondary Structure in Nonpeptidic Supramolecular Block Copolymers. Acc Chem Res 2021; 54:2397-2408. [PMID: 33914498 DOI: 10.1021/acs.accounts.1c00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins contain a level of complexity-secondary and tertiary structures-that polymer chemists aim to imitate. The bottom-up synthesis of protein-mimicking polymers mastering sequence variability and dispersity remains challenging. Incorporating polymers with predefined secondary structures, such as helices and π-π stacking sheets, into block copolymers circumvents the issue of designing and predicting one facet of their 3D architecture. Block copolymers with well-defined secondary-structure elements formed by covalent chain extension or supramolecular self-assembly may be considered for localized tertiary structures.In this Account, we describe a strategy toward block copolymers composed of units bearing well-defined secondary structures mixed in a "plug-and-play" manner that approaches a modicum of the versatility seen in nature. Our early efforts focused on the concept of single-chain collapse to achieve folded secondary structures through either hydrogen bonding or quadrupole attractive forces. These cases, however, required high dilution. Therefore, we turned to the ring-opening metathesis polymerization (ROMP) of [2.2]paracyclophane-1,9-dienes (pCpd), which forms conjugated, fluorescent poly(p-phenylenevinylene)s (PPVs) evocative of β-sheets. Helical building blocks arise from polymers such as poly(isocyanide)s (PICs) or poly(methacrylamide)s (PMAcs) containing bulky, chiral side groups while the coil motif can be represented by any flexible chain; we frequently chose poly(styrene) (PS) or poly(norbornene) (PNB). We installed moieties for supramolecular assembly at the chain ends of our "sheets" to combine them with complementary helical or coil-shaped polymeric building blocks.Assembling hierarchical materials tantamount to the complexity of proteins requires directional interactions with high specificity, covalent chain extension, or a combination of both chemistries. Our design is based on functionalized reversible addition-fragmentation chain-transfer (RAFT) agents that allowed for the introduction of recognition motifs at the terminus of building blocks and chain-terminating agents (CTAs) that enabled the macroinitiation of helical polymers from the chain end of ROMP-generated sheets and/or coils. To achieve triblock copolymers with a heterotelechelic helix, we relied on supramolecular assembly with helix and coil-shaped building blocks. Our most diverse structures to date comprised a middle block of PPV sheets, parallel or antiparallel, and supramolecularly or covalently linked, respectively, end-functionalized with molecular recognition units (MRUs) for orthogonal supramolecular assembly. We explored PPV sheets with multiple folds achieved by chain extension using alternating pCpd and phenyl-pentafluorophenyl β-hairpin turns. Using single-molecule polarization spectroscopy, we showed that folding occurs preferentially in multistranded over double-stranded PPV sheets. Our strategy toward protein-mimicking and foldable polymers demonstrates an efficient route toward higher ordered, well-characterized materials by taking advantage of polymers that naturally manifest secondary structures. Our studies demonstrate the retention of distinct architectures after complex assembly, a paradigm that we believe may extend to other polymeric folding systems.
Collapse
Affiliation(s)
- Margarita Milton
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ru Deng
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Arielle Mann
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Chengyuan Wang
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Danni Tang
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Alqarni MAM, Waldron C, Yilmaz G, Becer CR. Synthetic Routes to Single Chain Polymer Nanoparticles (SCNPs): Current Status and Perspectives. Macromol Rapid Commun 2021; 42:e2100035. [DOI: 10.1002/marc.202100035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/07/2021] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Gokhan Yilmaz
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - C. Remzi Becer
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
8
|
Huo H, Liu J, Kannan S, Chen L, Zhao Y, Zhang L, Chang G, Zhang Q, Liu F. Multicompartment Nanoparticles Bearing Hydrophilic/Hydrophobic Subdomains by Self-Assembly of Star Polymers in Aqueous Solution. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haohui Huo
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jie Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Senthil Kannan
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Long Chen
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Gang Chang
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Qilu Zhang
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
9
|
Chen R, Berda EB. 100th Anniversary of Macromolecular Science Viewpoint: Re-examining Single-Chain Nanoparticles. ACS Macro Lett 2020; 9:1836-1843. [PMID: 35653673 DOI: 10.1021/acsmacrolett.0c00774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single-chain nanoparticles (SCNP) are a class of polymeric nanoparticles obtained from the intramolecular cross-linking of polymers bearing reactive pendant groups. The development of SCNP has drawn tremendous attention since the fabrication of SCNP mimics the self-folding behavior in natural biomacromolecules and is highly desirable for a variety of applications ranging from catalysis, nanomedicine, nanoreactors, and sensors. The versatility of novel chemistries available for SCNP synthesis has greatly expanded over the past decade. Significant progress was also made in the understanding of a structure-property relationship in the single-chain folding process. In this Viewpoint, we discuss the effect of precursor polymer topology on single polymer folding. We summarize the progress in SCNP of complex architectures and highlight unresolved issues in the field, such as scalability and topological purity of SCNP.
Collapse
|
10
|
Li Q, Hou W, Li M, Ye H, Li H, Wang Z. Ultrasound Combined with Core Cross-Linked Nanosystem for Enhancing Penetration of Doxorubicin Prodrug/Beta-Lapachone into Tumors. Int J Nanomedicine 2020; 15:4825-4845. [PMID: 32753868 PMCID: PMC7355081 DOI: 10.2147/ijn.s251277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nanosized drug delivery systems (NDDSs) have shown excellent prospects in tumor therapy. However, insufficient penetration of NDDSs has significantly impeded their development due to physiological instability and low passive penetration efficiency. METHODS Herein, we prepared a core cross-linked pullulan-modified nanosized system, fabricated by visible-light-induced diselenide bond cross-linked method for transporting β-Lapachone and doxorubicin prodrug (boronate-DOX, BDOX), to improve the physiological stability of the NDDSs for efficient passive accumulation in tumor blood vessels (β-Lapachone/BDOX-CCS). Additionally, ultrasound (US) was utilized to transfer β-Lapachone/BDOX-CCS around the tumor vessel in a relay style to penetrate the tumor interstitium. Subsequently, β-Lapachone enhanced ROS levels by overexpressing NQO1, resulting in the transformation of BDOX into DOX. DOX, together with abundant levels of ROS, achieved synergistic tumor therapy. RESULTS In vivo experiments demonstrated that ultrasound (US) + cross-linked nanosized drug delivery systems (β-Lapachone/BDOX-CCS) group showed ten times higher DOX accumulation in the tumor interstitium than the non-cross-linked (β-Lapachone/BDOX-NCS) group. CONCLUSION Thus, this strategy could be a promising method to achieve deep penetration of NDDSs into the tumor.
Collapse
Affiliation(s)
- Qianyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing400016, People’s Republic of China
| | - Wei Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing400016, People’s Republic of China
| | - Meixuan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing400016, People’s Republic of China
| | - Hemin Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing400016, People’s Republic of China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing400016, People’s Republic of China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing400016, People’s Republic of China
| |
Collapse
|
11
|
Frisch H, Tuten BT, Barner‐Kowollik C. Macromolecular Superstructures: A Future Beyond Single Chain Nanoparticles. Isr J Chem 2020. [DOI: 10.1002/ijch.201900145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hendrik Frisch
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Bryan T. Tuten
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie KarlsruheInstitute of Technology (KIT) Engesserstr.18 76131 Karlsruhe Germany
| |
Collapse
|
12
|
Wei Z, Thanneeru S, Margaret Rodriguez E, Weng G, He J. Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture. SOFT MATTER 2020; 16:2276-2284. [PMID: 32040125 DOI: 10.1039/c9sm02440a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly(n-butyl acrylate-co-2-hydroxy-3-dipicolylamino methacrylate) (P(nBA-co-GMADPA)). The Eu-DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu-DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu3+ ions can weaken the cross-linking networks formed by Eu-DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers.
Collapse
Affiliation(s)
- Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | - Gengsheng Weng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA. and School of Material Science and Chemical Engineering, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo 315211, China.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA. and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
13
|
Singh A, Shakeel A, Kochhar D, Jeevanandham S, Rajput SK, Mukherjee M. Polymeric worm-like nanomicellar system for accelerated wound healing. J Adv Pharm Technol Res 2020; 11:36-43. [PMID: 32154157 PMCID: PMC7034177 DOI: 10.4103/japtr.japtr_153_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Self-assembly is an unparalleled step in designing macromolecular analogs of nature's simple amphiphiles. Tailoring hydrogel systems - a material with ample potential for wound healing applications - to simultaneously alleviate infection and prompt wound closure is vastly appealing. The poly (DEAEMA-co-AAc) (PDEA) is examined with a cutaneous excisional wound model alterations in wound size, and histological assessments revealed a higher wound healing rate, including dermis proliferation, re-epithelialization, reduced scar formation, and anti-inflammatory properties. Moreover, a mechanism for the formation of spherical and worm-like micelles (WLMs) is delineated using a suite of characterizations. The excellent porosity and ability to absorb exudates impart the PDEA with reliable wound healing. Altogether, this system demonstrates exceptional promise as an infection-mitigating, cell-stimulating, homeostasis-maintaining dressing for accelerated wound healing. The aim and objective of this study is to understand the mechanism of self-assembly in synthesized WLMs from PDEA and their application in wound healing.
Collapse
Affiliation(s)
- Aarti Singh
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, India
| | - Adeeba Shakeel
- All India Institute of Medical Sciences, New Delhi, India
| | - Dakshi Kochhar
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sampathkumar Jeevanandham
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, India
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Dou J, Yang R, Du K, Jiang L, Huang X, Chen D. A general method to greatly enhance ultrasound-responsiveness for common polymeric assemblies. Polym Chem 2020. [DOI: 10.1039/d0py00254b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ultrasound-controlled drug release is a very promising technique for controlled drug delivery due to the unique advantages of ultrasound as the stimulus.
Collapse
Affiliation(s)
- Jinkang Dou
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- People's Republic of China
| | - Ruiqi Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- People's Republic of China
| | - Kun Du
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- People's Republic of China
| | - Li Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- People's Republic of China
| | - Xiayun Huang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- People's Republic of China
| | - Daoyong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- People's Republic of China
| |
Collapse
|
15
|
Cao Y, Cao J, Zhang J, Zhang D, Li M, Xu Y, He K, Chen G, Yuan C, Dai L. The research on multi‐responsive azobenzene block copolymer and its self‐assembly behavior. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ying Cao
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Jie Cao
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Jiatian Zhang
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Dandan Zhang
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Meng Li
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Yiting Xu
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Kaibin He
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Guorong Chen
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Conghui Yuan
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire‐Retardant Materials, College of MaterialsXiamen University Xiamen China
| |
Collapse
|
16
|
Verde-Sesto E, Blázquez-Martín A, Pomposo JA. Advances in the Phototriggered Synthesis of Single-Chain Polymer Nanoparticles. Polymers (Basel) 2019; 11:E1903. [PMID: 31752235 PMCID: PMC6918210 DOI: 10.3390/polym11111903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
Clean use of photons from light to activate chemical reactions offers many possibilities in different fields, from chemistry and biology to materials science and medicine. This review article describes the advances carried out in last decades toward the phototriggered synthesis of single-chain polymer nanoparticles (SCNPs) as soft nanomaterials with promising applications in enzyme-mimicking catalysis and nanomedicine, among other different uses. First, we summarize some different strategies developed to synthesize SCNPs based on photoactivated intrachain homocoupling, phototriggered intrachain heterocoupling and photogenerated collapse induced by an external cross-linker. Next, we comprehensively review the emergent topic of photoactivated multifolding applied to SCNP construction. Finally, we conclude by summarizing recent strategies towards phototriggered disassembly of SCNPs.
Collapse
Affiliation(s)
- Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (J.A.P.)
| | - Agustín Blázquez-Martín
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (J.A.P.)
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (J.A.P.)
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE – Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
17
|
Shakeel A, Bhattacharya R, Jeevanandham S, Kochhar D, Singh A, Mehra L, Ghufran M, Garg P, Sangam S, Biswas S, Tyagi A, Kalyanasundaram D, Chakrabarti S, Mukherjee M. Graphene Quantum Dots in the Game of Directing Polymer Self-Assembly to Exotic Kagome Lattice and Janus Nanostructures. ACS NANO 2019; 13:9397-9407. [PMID: 31381848 DOI: 10.1021/acsnano.9b04188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene quantum dots (GQDs) are the harbingers of a paradigm shift that revitalize self-assembly of the colloidal puzzle by adding shape and size to the material-design palette. Although self-assembly is ubiquitous in nature, the extent to which these molecular legos can be engineered reminds us that we are still apprenticing polymer carpenters. In this quest to unlock exotic nanostructures ascending from eventual anisotropy, we have utilized different concentrations of GQDs as a filler in free-radical-mediated aqueous copolymerization. Extensive polymer grafting over the geometrically confined landscape of GQDs (0.05%) bolsters crystallization instilling a loom which steers interaction of polymeric cilia into interlaced equilateral triangles with high sophistication. Such two-dimensional (2D) assemblies epitomizing the planar tiling of "Star of David" forming a molecular kagome lattice (KL) without metal templation evoke petrichor. Interestingly, a higher percentage (0.3%) of GQDs allow selective tuning of the interfacial property of copolymers breaking symmetry due to surface energy incongruity, producing exotic Janus nanomicelles (JNMs). Herein, with the help of a suite of characterizations, we delineate the mechanism behind the formation of the KL and JNMs which forms a depot of heightened drug accretion with targeted delivery of 5-fluorouracil in the colon as validated by gamma scintigraphy studies.
Collapse
Affiliation(s)
- Adeeba Shakeel
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Rohan Bhattacharya
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| | - Sampathkumar Jeevanandham
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
- Amity Institute of Nanotechnology , Amity University , Noida 201303 , India
| | - Dakshi Kochhar
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Aarti Singh
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| | - Lalita Mehra
- Institute of Nuclear Medicine and Allied Sciences , Defence Research & Development Organisation , Timarpur , Delhi 110054 , India
| | - Maryam Ghufran
- Amity Institute of Molecular Medicine and Stem Cell Research , Amity University , Noida 201303 , India
| | - Piyush Garg
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Sujata Sangam
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research , Amity University , Noida 201303 , India
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences , Defence Research & Development Organisation , Timarpur , Delhi 110054 , India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology , Amity University , Noida 201303 , India
| | - Monalisa Mukherjee
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| |
Collapse
|
18
|
Asenjo-Sanz I, Verde-Sesto E, Pomposo JA. Valuable structure-size relationships for tadpole-shaped single-chain nanoparticles with long and short flexible tails unveiled. Phys Chem Chem Phys 2019; 21:10884-10887. [DOI: 10.1039/c9cp01318k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tadpole-shaped single-chain nanoparticles (TSCNPs) are useful soft building blocks for nanotechnology composed of a flexible polymer chain tethered to an intramolecularly folded single-chain nanoparticle.
Collapse
Affiliation(s)
- Isabel Asenjo-Sanz
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC
- E-20018 San Sebastián
- Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC
- E-20018 San Sebastián
- Spain
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC
- E-20018 San Sebastián
- Spain
- Departamento de Física de Materiales
- Universidad del País Vasco (UPV/EHU)
| |
Collapse
|