1
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Basnayake Pussepitiyalage V, Hemmati S. Sustainable, Green, and Continuous Synthesis of Fivefold Palladium Nanorods Using l-Ascorbic Acid in a Segmented Millifluidic Flow Reactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4200-4212. [PMID: 35352559 DOI: 10.1021/acs.langmuir.1c03133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pd nanorods (PdNRs) have recently come to attention due to their wide array of applications. The green synthesis of PdNR with a relatively high yield and high aspect ratio is challenging. A continuous millifluidic flow reactor (CMFR) has been explored to precisely control mass and heat transfer as well as mixing in the PdNR synthesis processes. CMFRs demonstrate a few drawbacks, such as the presence of parabolic velocity profile in the laminar flow of the reaction solution, causing uneven axial residence time distribution. The CMFRs are likely to show irreversible fouling, which may cause the product quality to deteriorate or result in the channel being clogged. These shortcomings can be avoided or minimized using a segmented millifluidic flow reactor (SMFR) that consists of the solution forming a train of individual segments in another inert medium. This study explores the use of a sustainable reducing agent (l-ascorbic acid) in the presence of potassium bromide (KBr) as the capping agent and poly(vinyl pyrrolidone) (PVP) as the stabilizing agent for PdNR synthesis in an SMFR employing compartmentalized flow of a reaction solution, in which liquid segments consisting of a reaction solution will be immersed in the steam generated by boiling of the solvent water. The effect of reaction parameters such as reagent concentration has been studied on the size and morphology of synthesized Pd nanostructures. A kinetic study has been conducted to calculate the rate of reduction that can be used as a quantitative measure for manipulation of the type and relative concentration of initially formed seeds. It has been shown that the initial reduction rate during the first 45 min of residence time of the millifluidic reactor is about 66% faster compared to the rest of the reaction. A filtration procedure has been utilized to separate Pd nanostructures other than nanorods synthesized in the SMFR.
Collapse
Affiliation(s)
| | - Shohreh Hemmati
- Department of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
3
|
Zang L, Yan J, Pang M, Zhang B, Chen J, Guo P. Enhanced Electrocatalytic Activity of Alloyed Palladium-Lead Nanoparticles toward Electrooxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13132-13140. [PMID: 34714658 DOI: 10.1021/acs.langmuir.1c02324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although many researchers have made great efforts to pursue promising high-efficiency electrocatalysts, a formidable challenge remains for designing excellent palladium-based electrocatalysts for commercializing direct liquid fuel cells. This study reports the synthesis of bimetallic PdPb nanoparticles (NPs) via a mixed solution containing cetyl trimethyl ammonium bromide as the capping agent. Alloyed PdPb NPs are formed, where the size of the NPs increases as Pb atoms are introduced gradually. However, Pd3Pb NPs are obtained with the same molar ratio of Pd and Pb in the raw systems. Among all of the as-made NPs, Pd9Pb1 NPs exhibit superior catalytic activity (2620 mA mg-1) toward ethanol electrooxidation, 4.3 times higher than commercial Pd/C catalysts (613 mA mg-1). The overall rate of the EOR for PdPb NPs is determined, demonstrating that the electrocatalytic activity of the PdPb NPs increases at high catalytic temperatures, in high pH environments, and/or at high ethanol concentrations.
Collapse
Affiliation(s)
- Lei Zang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jie Yan
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ben Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
4
|
Qin Z, Chen B, Mao Y, Shi C, Li Y, Huang X, Yang F, Gu N. Achieving Ultrasmall Prussian Blue Nanoparticles as High-Performance Biomedical Agents with Multifunctions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57382-57390. [PMID: 33295749 DOI: 10.1021/acsami.0c18357] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prussian blue nanoparticles (PBNPs), which belong to the iron-based metal-organic frameworks, are important biomedical agents. Reducing the size of PBNPs can bring improved functional properties, but unfortunately, has been a long-standing challenge. Herein, sub-5 nm ultrasmall PBNPs (USPBNPs) were successfully synthesized by using ethanol/water mixture as the solvent and polyvinyl pyrrolidone (PVP) as the surface capping agent. Adjusting the ethanol/water ratio is not only able to control the nucleation time and size of PBNPs but also tune the conformation of PVP molecules so as to prevent interparticle attachment and enlargement. At an ethanol/water ratio of 3:1, highly stable USPBNPs with a size of ∼3.4 nm were synthesized. Due to their large specific surface area, they demonstrated high peroxidase-like and catalase-like activities, which outperform PBNPs synthesized by a conventional method. In addition, they also showed a high longitudinal relaxation rate (r1) of 1.3 mM-1 S-1, suggesting their potential to be used as T1 MRI agent.
Collapse
Affiliation(s)
- Zhiguo Qin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215009, China
| | - Yu Mao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chu Shi
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiao Huang
- State Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Synthesis of Bimetallic PdAg Nanoparticles and Their Electrocatalytic Activity toward Ethanol. J CHEM-NY 2020. [DOI: 10.1155/2020/1917380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Palladium-based bimetallic nanoparticles (NPs) have been studied as important electrocatalysts for energy conversion due to their high electrocatalytic performance and the less usage of the noble metal. Herein, well-dispersed PdAg NPs with uniform size were prepared via oil bath accompanied with the hydrothermal method. The variation of the Ag content in PdAg NPs changed the lattice constant of the face-centered cubic alloy nanostructures continuously. The Pd/Ag molar ratio in the PdAg alloy NPs affected their size and catalytic activity toward ethanol electrooxidation. Experimental data showed that PdAg NPs with less Ag content exhibited better electrocatalytic activity and durability than pure Pd NPs owing to both the small size and the synergistic effect. PdAg-acac-4 with the Pd/Ag molar ratio of 4 : 1 in the start system possessed the highest catalytic current density of 2246 mA/mg for the electrooxidation of ethanol. The differences in the morphology and electrocatalytic activity of the as-made PdAg NPs have been discussed and analyzed.
Collapse
|
6
|
Toward Overcoming the Challenges in the Comparison of Different Pd Nanocatalysts: Case Study of the Ethanol Oxidation Reaction. INORGANICS 2020. [DOI: 10.3390/inorganics8110059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Precious metal nanoparticles, in particular palladium nanomaterials, show excellent catalytic properties and are key in the development of energy systems. For instance, ethanol fuel cells are promising devices for sustainable energy conversion, where Pd-based catalysts are key catalysts for the related ethanol oxidation reaction (EOR). Pd is a limited resource; thus, a remaining challenge is the development of efficient and stable Pd-based catalysts. This calls for a deeper understanding of the Pd properties at the nanoscale. This knowledge can be gained in comparative studies of different Pd nanomaterials. However, such studies remain challenging to perform and interpret due to the lack of cross-studies using the same Pd nanomaterials as a reference. Here, as-prepared sub 3 nm diameter surfactant-free Pd nanoparticles supported on carbon are obtained by a simple approach. The as-prepared catalysts with Pd loading 10 and 30 wt % show higher activity and stability compared to commercially available counterparts for the EOR. Upon electrochemical testing, a significant size increase and loss of electrochemical active surface are observed for the as-prepared catalysts, whereas the commercial samples show an increase in the electrochemically active surface area and moderate size increase. This study shines light on the challenging comparison of different catalysts across the literature. Further advancement in Pd (electro)catalyst design will gain from including self-prepared catalysts. The simple synthesis detailed easily leads to suitable nanoparticles to be used as a reference for more systematic comparative studies of Pd catalysts across the literature.
Collapse
|
7
|
Yang M, Lao X, Sun J, Ma N, Wang S, Ye W, Guo P. Assembly of Bimetallic PdAg Nanosheets and Their Enhanced Electrocatalytic Activity toward Ethanol Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11094-11101. [PMID: 32838533 DOI: 10.1021/acs.langmuir.0c02102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The direct ethanol fuel cells in an alkaline medium have a broad vision of applications because of their large energy density, reasonable power density, and environmentally friendly features. Herein, we present a facile one-step method to synthesize PdAg nanosheet assemblies (NSAs) in a mixed solution of N,N-dimethylformamide and water with the addition of molybdenum hexacarbonyl and cetyltrimethylammonium bromide. Pure Pd NSA shows an irregular shape while PdAg NSAs gradually undergo a process from solid assembly to a hollow structure with the Pd/Ag molar ratio changing from 3:1 to 2:1 to 1:1. The formation of alloy nanosheets in the assemblies combined with the introduction of Ag in the Pd catalyst enhances the catalytic activity toward ethanol electrooxidation from 1524 mA mg-1 of pure Pd NSA to 1866 mA mg-1 of PdAg NSA with a Pd/Ag molar ratio of 2:1. On the basis of the experimental data, compared with pure Pd structures, both the nature of a thin nanosheet of PdAg NSAs and the structural changes in the alloy assemblies play key roles in determining the electrocatalytic activity of these Pd-based catalysts.
Collapse
Affiliation(s)
- Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jing Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ning Ma
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Shuqing Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wanneng Ye
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
8
|
Cheng Y, Xue J, Yang M, Li H, Guo P. Bimetallic PdCu Nanoparticles for Electrocatalysis: Multiphase or Homogeneous Alloy? Inorg Chem 2020; 59:10611-10619. [PMID: 32678586 DOI: 10.1021/acs.inorgchem.0c01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystal phase structure of bimetallic alloy is an important factor determining the electrocatalytic activity toward oxidation of energy molecules. In this paper, PdCu bimetallic NPs with similar element composition and different crystal phase structural features have been synthesized hydrothermally by adjusting the content of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na). Multiphase PdCu NPs composed of pure Pd and alloy phase are obtained with a low concentration (even as low as zero) of EDTA-2Na in synthetic systems while homogeneous PdCu alloy NPs are formed in the presence of EDTA-2Na with a high concentration. The catalytic activity of ethanol electrooxidation is increased from 3.1 mA·cm-2 of pure Pd NPs, to 3.6 mA·cm-2 of multiphase PdCu NPs, and to 5.0 mA·cm-2 of homogeneous PdCu alloy NPs (about 2360 mA mgPd-1). The surface composition and structural stability of homogeneous PdCu NPs were much less damaged during electrochemical measurements. Based on the experimental data, the formation mechanism of multiphase and homogeneous PdCu NPs and their structure-property relationship have been discussed.
Collapse
Affiliation(s)
- Yuanzhe Cheng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jing Xue
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
9
|
Khan IA, Khan L, Khan SI, Badshah A. Shape-control synthesis of PdCu nanoparticles with excellent catalytic activities for direct alcohol fuel cells application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Dong WH, Liu JX, Mou XJ, Liu GS, Huang XW, Yan X, Ning X, Russell SJ, Long YZ. Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids Surf B Biointerfaces 2020; 188:110766. [DOI: 10.1016/j.colsurfb.2019.110766] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
|
11
|
Pei Y, Wang L, Huang L, Hu Y, Jia Q, Zhang H, Zhang S. ISOBAM-stabilized Ni 2+ colloidal catalysts: high catalytic activities for hydrogen generation from hydrolysis of KBH 4. NANOTECHNOLOGY 2020; 31:134003. [PMID: 31783396 DOI: 10.1088/1361-6528/ab5d58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ISOBAM-104-stabilized Ni2+ colloidal catalysts were synthesized through a facile method and used for hydrogen generation from hydrolysis of potassium borohydride (KBH4). Ni nanoparticles (NPs) were formed as the active phase during the catalytic process. Ultraviolet-visible spectrophotometry (UV-vis) and transmission electron microscopy were employed to characterize the structure and particle size of the as-formed Ni NPs. The results suggested that the catalytic activity of Ni2+ colloidal catalyst increased with the decreased size of as-formed Ni NPs, which is consistent with the results of density functional theory calculation. The highest catalytic activity of the catalyst can be 12400 ml-H2 min-1 g-Ni-1, which was even higher than that of noble Pt or Pd colloidal catalysts prepared using identical methods and catalytic conditions. According to the Arrhenius method, the ISOBAM-104-stabilized Ni2+ colloidal catalysts showed low activation energies of about 41.3 kJ mol-1 for the hydrogen generation from hydrolysis basic KBH4 solution.
Collapse
Affiliation(s)
- Yuantao Pei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Gong Y, Ma N, Yin Y, Xue J, Dong C, Guo P. Synthesis of PdCu nanowire assembly and their catalytic activity toward ethanol oxidation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wang R, Yu Q, He Y, Bai J, Jiao T, Zhang L, Bai Z, Zhou J, Peng Q. Self-assembled polyelectrolyte-based composite hydrogels with enhanced stretchable and adsorption performances. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Hou N, Wang R, Wang F, Bai J, Jiao T, Bai Z, Zhang L, Zhou J, Peng Q. Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Non-covalent self-assembly of multi-target polystyrene composite adsorbent with highly efficient Cu(II) ion removal capability. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Liu Y, Feng Y, Wang R, Jiao T, Li J, Rao Y, Zhang Q, Bai Z, Peng Q. Self-Assembled Naphthylidene-Containing Schiff Base Anchored Polystyrene Nanocomposites Targeted for Selective Cu(II) Ion Removal from Wastewater. ACS OMEGA 2019; 4:12098-12106. [PMID: 31460323 PMCID: PMC6682007 DOI: 10.1021/acsomega.9b01205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 05/17/2023]
Abstract
Self-assembled composite adsorbents that combine the controllability of self-assembly with a mild operation process are promising for removal of heavy metal ions in wastewater. The design and preparation of functionalized composite adsorbent materials with multiple-site adsorption ability remain the most attractive in effectively removing heavy metal ions. Inspired by the macroporous structure of charged polystyrene (PS) resin and chelation of Schiff bases with heavy metal ions, smart composite adsorbents are constructed based on the combination and synergistic effect of multiple hydrophobic, π-π stacking, and electrostatic noncovalent interactions between polystyrene resin and naphthylidene-containing Schiff base (NSB). The resulting hybrid nanomaterials (PS-NSB) have uniform porous structures and well-defined and multiple target sites. These properties promote diffusion of the target ion, increase the binding site, and enhance the removal efficacy. This study offers a new strategy to harness a self-assembled Schiff base with integrated flexibility and multifunctions to enhance target metal ion specific binding and removal effects, highlighting opportunities to develop smart composite adsorbents.
Collapse
Affiliation(s)
- Yamei Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yao Feng
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Ran Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Jinghong Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yandi Rao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qingrui Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Zhenhua Bai
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qiuming Peng
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental
and Chemical Engineering, State Key Laboratory of Metastable Materials Science
and Technology, and National Engineering Research Center for Equipment and Technology
of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| |
Collapse
|
17
|
Yin J, Zhang L, Jiao T, Zou G, Bai Z, Chen Y, Zhang Q, Xia M, Peng Q. Highly Efficient Catalytic Performances of Nitro Compounds and Morin via Self-Assembled MXene-Pd Nanocomposites Synthesized through Self-Reduction Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1009. [PMID: 31336924 PMCID: PMC6669661 DOI: 10.3390/nano9071009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
With development of the society, the problem of environmental pollution is becoming more and more serious. There is the urgent need to develop a new type of sustainable green material for degradable pollutants. However, the conventional preparation method is limited by conditions such as cumbersome operation, high energy consumption, and high pollution. Here, a simple method named self-reduction has been proposed, to synthesize highly efficient catalytic nitro compounds and morin self-assembled MXene-Pd nanocomposites. Palladium nanoparticles were grown in situ on MXene nanosheets to form MXene@PdNPs. MXene@PdNPs composites with different reaction times were prepared by adjusting the reduction reaction time. In particular, MXene@PdNPs20 exhibited a high catalytic effect on 4-NP and 2-NA, and the first-order rate constants of the catalysis were 0.180 s-1 and 0.089 s-1, respectively. It should be noted that after eight consecutive catalytic cycles, the conversion to catalyze 4-NP was still greater than 94%, and the conversion to catalyze 2-NA was still greater than 91.8%. Therefore, the research of self-assembled MXene@PdNPs nanocomposites has important potential value for environmental management and sustainable development of human health, and provides new clues for the future research of MXene-based new catalyst materials.
Collapse
Affiliation(s)
- Juanjuan Yin
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Lun Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yan Chen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| | - Meirong Xia
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| |
Collapse
|
18
|
Hou L, Niu Y, Jiang Y, Jiao T, Guo Y, Zhou Y, Gao F. Insulin amyloid fibrils-templated rational self-assembly of vine-tree-like PtRh nanocatalysts for efficient methanol electrooxidation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Electrocapacitive behavior of colloidal nanocrystal assemblies of manganese ferrite in multivalent ion electrolytes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances. Catalysts 2019. [DOI: 10.3390/catal9060559] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nano-sized palladium nanoparticles showed high catalytic activity with severe limitations in catalytic field due to the tendency to aggregate. A solid substrate with large specific surface area is an ideal carrier for palladium nanoparticles. In present work, polyethyleneimine/polycaprolactone/Pd nanoparticles (PEI/PCL@PdNPs) composite catalysts were successfully designed and prepared by electrospinning and reduction methods using PEI/PCL elexctrospun fiber as carrier. The added PEI component effectively regulated the microscopic morphology of the PEI/PCL fibers, following a large number of pit structures which increased the specific surface area of the electrospun fibers and provided active sites for loading of the palladium particles. The obtained PEI/PCL@PdNPs catalysts for reductions of 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA) exhibited extremely efficient, stable, and reusable catalytic performance. It was worth mentioning that the reaction rate constant of catalytic reduction of 4-NP was as high as 0.16597 s−1. Therefore, we have developed a highly efficient catalyst with potential applications in the field of catalysis and water treatment.
Collapse
|
21
|
Structural regulation of NiFe2O4 colloidal nanocrystal assembly and their magnetic and electrocatalytic properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Wang R, Liu Q, Jiao T, Li J, Rao Y, Su J, Bai Z, Peng Q. Facile Preparation and Enhanced Catalytic Properties of Self-Assembled Pd Nanoparticle-Loaded Nanocomposite Films Synthesized via the Electrospun Approach. ACS OMEGA 2019; 4:8480-8486. [PMID: 31459937 PMCID: PMC6649286 DOI: 10.1021/acsomega.9b01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 05/29/2023]
Abstract
In recent years, people pay more attention to environmental pollution and the treatment of sewage has become the focus of recent research. Palladium nanoparticles have good catalytic properties but are easy to agglomerate. Therefore, we used the electrospinning technology to prepare a uniform composite nanofiber film based on polyacrylic acid (PAA) and polyvinyl alcohol (PVA), which demonstrated that they are good carriers of palladium nanoparticles to make the nanoparticles well dispersed. Furthermore, carbon nanotubes (CNTs) were added to increase the specific surface area of the composite nanofiber film and improve its mechanical properties. The successfully synthesized PAA/PVA/CNT-COOH@palladium nanoparticle (PdNP) composite fiber films were characterized by scanning electron microscopy, transmission electron microscopy, and thermogravimetry analysis. p-Nitrophenol and 2-nitroaniline were utilized as typical pollutants to further evaluate the catalytic performance of PAA/PVA/CNT-COOH@PdNP composite fiber films. The PAA/PVA/CNT-COOH@PdNP composite fiber films exhibited enhanced catalytic performance and could be reused for eight consecutive cycles. This work provided new clues for the preparation and application of composite electrospun film materials.
Collapse
Affiliation(s)
- Ran Wang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qingqing Liu
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yandi Rao
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jingjing Su
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhenhua Bai
- National
Engineering Research Center for Equipment and Technology of Cold Strip
Rolling, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qiuming Peng
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
23
|
Li Y, Yang M, Tian Z, Luo N, Li Y, Zhang H, Zhou A, Xiong S. Assembly of Copper Phthalocyanine on TiO 2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting. Front Chem 2019; 7:334. [PMID: 31157207 PMCID: PMC6530342 DOI: 10.3389/fchem.2019.00334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
A photoelectrochemical device was achieved by interfacial self-assembly of macrocyclic π-conjugated copper phthalocyanine (CuPc) on surface of TiO2 nanorod arrays (NRs). The photocurrent density of the elegant TiO2@CuPc NRs photoanode reaches 2.40 mA/cm2 at 1.23 V vs. RHE under the illumination of 100 mW/cm2 from AM 1.5G sun simulator, which is 2.4 times higher than that of the pure TiO2. At the same time, the photoelectrochemical device constructed through this strategy has good stability and the photocurrent density remain almost no decline after 8 h of continuous operation. The Mott-Schottky and LSV curves demonstrate that CuPc act as a co-catalyst for water oxidation and a possible mechanism is proposed for water oxidation based on careful analysis of the detailed results. The holes from VB of TiO2 photogenerated by electrons exciting are consumed by a process in which Cu2+ is oxidized to Cu3+ and Cu4+, and then oxidize water to produce oxygen. CuPc species is considered to be a fast redox mediator to reduce the activation energy of water oxidation in and effectively promote charge separation.
Collapse
Affiliation(s)
- Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Xi'an, China
| | - Mengru Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Zimin Tian
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Ningdan Luo
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Haohao Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Anning Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Xi'an, China
| | - Shanxin Xiong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Xi'an, China
| |
Collapse
|
24
|
Density functional theory investigation of the adsorption behaviors of SO2 and NO2 on a Pt(111) surface. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Hou L, Jiang X, Jiang Y, Jiao T, Cui R, Deng S, Gao J, Guo Y, Gao F. Facile Preparation of Porous Rod-like Cu x Co 3-x O 4/C Composites via Bimetal-Organic Framework Derivation as Superior Anodes for Lithium-Ion Batteries. ACS OMEGA 2019; 4:7565-7573. [PMID: 31459849 PMCID: PMC6648762 DOI: 10.1021/acsomega.9b00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 05/28/2023]
Abstract
To meet growing demand of energy, lithium-ion batteries (LIBs) are under enormous attention. The development of well-designed ternary transition metal oxides with high capacity and high stability is important and challengeable for using as electrode materials for LIBs. Herein, a new and highly reversible carbon-coated Cu-Co bimetal oxide composite material (Cu x Co3-x O4/C) with a one-dimensional (1D) porous rod-like structure was prepared through a bimetal-organic framework (BMOF) template strategy followed by a morphology-inherited annealing treatment. During the annealing process, carbon derived from organic frameworks in situ fully covered the synthesized bimetal oxide nanoparticles, and a large number of porous spaces were generated in the MOF-derived final samples, thus ensuring high electrical conductivity and fast ion diffusion. Benefiting from the synergetic effect of bimetals, the unique 1D porous structure, and conductive carbon network, the as-synthesized Cu x Co3-x O4/C delivers a high capacity retention up to 92.4% after 100 cycles, with a high reversible capacity still maintained at 900 mA h g-1, indicating an excellent cycling stability. Also, a good rate performance is demonstrated. These outstanding electrochemical properties show us a concept of synthesis of MOF-derived bimetal oxides combining both advantages of carbon incorporation and porous structure for progressive lithium-ion batteries.
Collapse
Affiliation(s)
- Li Hou
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xinyu Jiang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yang Jiang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Ruiwen Cui
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Shuolei Deng
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Jiajia Gao
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yuanyuan Guo
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Faming Gao
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| |
Collapse
|
26
|
Luo S, Wang R, Yin J, Jiao T, Chen K, Zou G, Zhang L, Zhou J, Zhang L, Peng Q. Preparation and Dye Degradation Performances of Self-Assembled MXene-Co 3O 4 Nanocomposites Synthesized via Solvothermal Approach. ACS OMEGA 2019; 4:3946-3953. [PMID: 31459603 PMCID: PMC6648273 DOI: 10.1021/acsomega.9b00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 05/05/2023]
Abstract
Two-dimensional metal carbides or nitrides (MXenes) demonstrated wide applications in energy storage, water treatment, electromagnetic shielding, gas/biosensing, and photoelectrochemical catalysis due to their higher specific surface area and excellent conductivity. They also have the advantages of flexible and adjustable components and controllable minimum nanolayer thickness. In this study, a cube-like Co3O4 particle-modified self-assembled MXene (Ti3C2) nanocomposite has been prepared successfully by a simple solvothermal method. The Co3O4 particles are well dispersed on the surface and inner layers of the Ti3C2 sheets, which effectively prevent the restacking of Ti3C2 sheets and form an organized composite structure. The physical properties of these nanocomposites were studied by using XRD, SEM, EDX, TEM, and XPS. The performance of the obtained samples was evaluated as new nanocatalysts for degrading methylene blue and Rhodamine B in batch model experiments. The prepared Mxene-Co3O4 nanocomposites can be well regenerated and reused for eight consecutive cycles, indicating potential wide applications in wastewater treatment and composite materials.
Collapse
Affiliation(s)
- Shanshan Luo
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Ran Wang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Juanjuan Yin
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Kaiyue Chen
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Guodong Zou
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Lun Zhang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Jingxin Zhou
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Lexin Zhang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qiuming Peng
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| |
Collapse
|
27
|
Chen K, Yan X, Li J, Jiao T, Cai C, Zou G, Wang R, Wang M, Zhang L, Peng Q. Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E284. [PMID: 30781665 PMCID: PMC6409947 DOI: 10.3390/nano9020284] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
The effective functionalization and self-assembly of MXene are of crucial importance for a broad range of nanomaterial applications. In this work, we investigated the aggregates of sulfanilic acid-modified MXene (abbreviated as MXene-SO3H) with three model dyes at the air⁻water interface and demonstrated the morphological and aggregation changes of composite films, using Langmuir-Blodgett (LB) technology, as well as excellent uniformity and reproducibility by using surface-enhanced Raman scattering (SERS) spectra. This research has found that cationic dye molecules were adsorbed onto negatively charged MXene-SO3H particles mainly through electrostatic interaction and the particles induced dyes to form highly ordered nanostructures including H- and/or J-aggregates corresponding to monomers in bulk solution. The surface pressure-area isotherms from different dye sub phases confirmed that the stable composite films have been successfully formed. And the spectral results reveal that different dyes have different types of aggregations. In addition, the SERS spectra indicated that the optimal layers of MXene-SO3H/methylene blue (MB) films was 50 layers using rhodamine 6G (R6G) as probe molecule. And the formed 50 layers of MXene-SO3H/MB films (MXene-SO3H/MB-50) as SERS substrate were proved to possess excellent uniformity and repeatability.
Collapse
Affiliation(s)
- Kaiyue Chen
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaoya Yan
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Junkai Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Chong Cai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Mingli Wang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
28
|
Zhu J, Wang R, Geng R, Zhang X, Wang F, Jiao T, Yang J, Bai Z, Peng Q. A facile preparation method for new two-component supramolecular hydrogels and their performances in adsorption, catalysis, and stimuli-response. RSC Adv 2019; 9:22551-22558. [PMID: 35519444 PMCID: PMC9067143 DOI: 10.1039/c9ra03827b] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, we prepared a novel multifunctional two-component supramolecular hydrogel (T-G hydrogel) via two organic molecules in ethanol/water mixed solvents. In addition, we prepared gold nanoparticle/T-G (AuNPs/T-G) composite hydrogels using T-G hydrogel as a template for stabilizing AuNPs by adding HAuCl4 and NaBH4 during the heating and cooling process of T-G hydrogels. The morphology and microstructure of the as-prepared hydrogels were characterized using SEM, TEM, XRD, and FT-IR. The hydrogels prepared by solutions that contained different ethanol/water volume ratios exhibited different microstructures, such as sheets, strips, and rods. The obtained T-G hydrogels exhibited a sensitive response to pH changes in the process of sol–gel transformation and showed good adsorption properties for model organic dyes. In the presence of NaBH4, the obtained AuNP/T-G composite hydrogels exhibited the excellent catalytic performance for 4-nitrophenol (4-NP) degradation. Thus, the current research provides new clues in developing new multifunctional two-component supramolecular gel materials and exhibits potential applications for wastewater treatment. New two-component supramolecular hydrogels were prepared via a self-assembly process, demonstrating potential applications in adsorption and catalysis as well as sensor materials.![]()
Collapse
Affiliation(s)
- Junlin Zhu
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Rui Geng
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Xuan Zhang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Fan Wang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Jingyue Yang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| |
Collapse
|