1
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Veronese E, Metrangolo P, Dichiarante V. Engineering Amino Acid and Peptide Supramolecular Architectures through Fluorination. Chemistry 2024; 30:e202400617. [PMID: 38634399 DOI: 10.1002/chem.202400617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Fluorinated non-natural amino acids are attracting considerable research interest, especially in the biomedical field and in materials science, thanks to their ability to self-assemble into peculiar supramolecular structures. The conformational changes induced by the presence of fluorine atoms obviously affect their functions, as well as the biological activity of the deriving peptides and proteins. Here, we will briefly describe the main effects of fluorination on the aggregation behavior of such building blocks, focusing in particular on their improved tendency to form fibrils, and gels therefrom. Our aim is to underline the promising potential of fluorination as a tool to affect the self-assembly features of amino acids, both when used alone and when inserted into polypeptide sequences. The ability of fluorine to influence physical, chemical, and structural properties of these substrates offers the possibility to engineer bioinspired materials with specific and tunable functions.
Collapse
Affiliation(s)
- Eleonora Veronese
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milan, Italy
| | - Pierangelo Metrangolo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milan, Italy
| | - Valentina Dichiarante
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
3
|
Liu R, Dong X, Seroski DT, Soto Morales B, Wong KM, Robang AS, Melgar L, Angelini TE, Paravastu AK, Hall CK, Hudalla GA. Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies. Angew Chem Int Ed Engl 2023; 62:e202314531. [PMID: 37931093 PMCID: PMC10841972 DOI: 10.1002/anie.202314531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary β-sheet-forming peptide pairs known as CATCH(X+/Y-) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D-) (Ac-DQDFDFDFDQD-Am) pair formed either β-sheet-rich microspheres or β-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y-) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N- and C-terminal amino acids in CATCH(6K+) and CATCH(6D-) to Qs, increased observed co-assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)-green fluorescent protein fusions could be incorporated into the β-sheet plates and microspheres formed by the CATCH(6K+/6D-) pair, demonstrating the potential to endow functionality.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Xin Dong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Bethsymarie Soto Morales
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Kong M Wong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Lucas Melgar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| |
Collapse
|
4
|
Le X, Gao T, Wang L, Wei F, Chen C, Zhao Y. Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications. Curr Pharm Des 2022; 28:3546-3562. [PMID: 36424793 DOI: 10.2174/1381612829666221124103526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
A series of functional biomaterials with different sizes and morphologies can be constructed through self-assembly, among which amphiphilic peptide-based materials have received intense attention. One main possible reason is that the short amphiphilic peptides can facilitate the formation of versatile materials and promote their further applications in different fields. Another reason is that the simple structure of amphiphilic peptides can help establish the structure-function relationship. This review highlights the recent advances in the self-assembly of two typical peptide species, surfactant-like peptides (SLPs) and peptides amphiphiles (PAs). These peptides can self-assemble into diverse nanostructures. The formation of these different nanostructures resulted from the delicate balance of varied non-covalent interactions. This review embraced each non-covalent interaction and then listed the typical routes for regulating these non-covalent interactions, then realized the morphologies modulation of the self-assemblies. Finally, their applications in some biomedical fields, such as the stabilization of membrane proteins, templating for nanofabrication and biomineralization, acting as the antibacterial and antitumor agents, hemostasis, and synthesis of melanin have been summarized. Further advances in the self-assembly of SLPs and PAs may focus on the design of functional materials with targeted properties and exploring their improved properties.
Collapse
Affiliation(s)
- Xiaosong Le
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Tianwen Gao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Li Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Feng Wei
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| |
Collapse
|
5
|
Fluorinated Protein and Peptide Materials for Biomedical Applications. Pharmaceuticals (Basel) 2022; 15:ph15101201. [PMID: 36297312 PMCID: PMC9609677 DOI: 10.3390/ph15101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Fluorination represents one of the most powerful modern design strategies to impart biomacromolecules with unique functionality, empowering them for widespread application in the biomedical realm. However, the properties of fluorinated protein materials remain unpredictable due to the heavy context-dependency of the surrounding atoms influenced by fluorine’s strong electron-withdrawing tendencies. This review aims to discern patterns and elucidate design principles governing the biochemical synthesis and rational installation of fluorine into protein and peptide sequences for diverse biomedical applications. Several case studies are presented to deconvolute the overgeneralized fluorous stabilization effect and critically examine the duplicitous nature of the resultant enhanced chemical and thermostability as it applies to use as biomimetic therapeutics, drug delivery vehicles, and bioimaging modalities.
Collapse
|
6
|
Scarel E, Bellotto O, Rozhin P, Kralj S, Tortora M, Vargiu AV, De Zorzi R, Rossi B, Marchesan S. Single-atom substitution enables supramolecular diversity from dipeptide building blocks. SOFT MATTER 2022; 18:2129-2136. [PMID: 35179536 DOI: 10.1039/d1sm01824h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dipeptides are popular building blocks for supramolecular gels that do not persist in the environment and may find various applications. In this work, we show that a simple substitution on the aromatic side-chain of phenylalanine with either fluorine or iodine enables supramolecular diversity upon self-assembly at neutral pH, leading to hydrogels or crystals. Each building block is characterized by 1H- and 13C-NMR spectroscopy, LC-MS, circular dichroism, and molecular models. The supramolecular behaviour is monitored with a variety of techniques, including circular dichroism, oscillatory rheology, transmission electron microscopy, attenuated total reflectance Fourier-transformed infrared spectroscopy, visible Raman spectroscopy, synchrotron-radiation single-crystal X-ray diffraction and UV Resonance Raman spectroscopy, allowing key differences to be pinpointed amongst the halogenated analogues.
Collapse
Affiliation(s)
- Erica Scarel
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Petr Rozhin
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Slavko Kralj
- Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia
- University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Mariagrazia Tortora
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Attilio V Vargiu
- University of Cagliari, Physics Dept., 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Silvia Marchesan
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
7
|
Raganato L, Del Giudice A, Ceccucci A, Sciubba F, Casciardi S, Sennato S, Scipioni A, Masci G. Self-assembling nanowires from a linear l,d-peptide conjugated to the dextran end group. Int J Biol Macromol 2022; 207:656-665. [PMID: 35292281 DOI: 10.1016/j.ijbiomac.2022.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Preparation and characterization of a block-like l,d-octapeptide-dextran conjugate DEX29-(l-Val-d-Val)4 self-assembling into nanowire structures is reported. The conjugate was prepared by solid phase click-chemistry on an alkyne group N-terminus functionalized peptide with a regularly alternating enantiomeric sequence. Low molecular weight dextran (Xn = 29) with moderately low dispersity (1.30) was prepared by controlled acid hydrolysis and dialysis with selected cut-off and functionalized with an azido group on the reducing end by reductive amination. The strong hydrogen bonds and hydrophobic interactions of the (l-Val-d-Val)4 linear peptide drive the conjugate to self-assemble into long (0.1-1 μm) nanowires. To our knowledge, this is the first example of a peptide-polysaccharide conjugate that can self-assemble into a nanowire architecture.
Collapse
Affiliation(s)
- Luca Raganato
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Anita Ceccucci
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, via Vito Volterra 62, Roma, Italy
| | - Fabio Sciubba
- Department of Environmental biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Stefano Casciardi
- National Institute for Insurance Against Accidents at Work (INAIL Research), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| | - Simona Sennato
- Institute for Complex Systems, National Research Council (ISC-CNR), Sede Sapienza and Department of Physics, Sapienza Università di Roma, P.le A. Moro, 2, 00185, Rome, Italy
| | - Anita Scipioni
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy.
| | - Giancarlo Masci
- Department of Chemistry, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy.
| |
Collapse
|
8
|
Scarel M, Marchesan S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021; 26:3376. [PMID: 34204905 PMCID: PMC8199760 DOI: 10.3390/molecules26113376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.
Collapse
Affiliation(s)
- Marco Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
9
|
Yeniyurt Y, Kilic S, Güner-Yılmaz ÖZ, Bozoglu S, Meran M, Baysak E, Kurkcuoglu O, Hizal G, Karatepe N, Batirel S, Güner FS. Fmoc-PEG Coated Single-Wall Carbon Nanotube Carriers by Non-covalent Functionalization: An Experimental and Molecular Dynamics Study. Front Bioeng Biotechnol 2021; 9:648366. [PMID: 34055757 PMCID: PMC8160473 DOI: 10.3389/fbioe.2021.648366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Due to their structural characteristics at the nanoscale level, single-walled carbon nanotubes (SWNTs), hold great promise for applications in biomedicine such as drug delivery systems. Herein, a novel single-walled carbon nanotube (SWNT)-based drug delivery system was developed by conjugation of various Fmoc-amino acid bearing polyethylene glycol (PEG) chains (Mw = 2,000, 5,000, and 12,000). In the first step, full-atom molecular dynamics simulations (MD) were performed to identify the most suitable Fmoc-amino acid for an effective surface coating of SWNT. Fmoc-glycine, Fmoc-tryptophan, and Fmoc-cysteine were selected to attach to the PEG polymer. Here, Fmoc-cysteine and -tryptophan had better average interaction energies with SWNT with a high number of aromatic groups, while Fmoc-glycine provided a non-aromatic control. In the experimental studies, non-covalent modification of SWNTs was achieved by Fmoc-amino acid-bearing PEG chains. The remarkably high amount of Fmoc-glycine-PEG, Fmoc-tryptophan-PEG, and Fmoc-cysteine-PEG complexes adsorbed onto the SWNT surface, as was assessed via thermogravimetric and UV-vis spectroscopy analyses. Furthermore, Fmoc-cysteine-PEG5000 and Fmoc-cysteine-PEG12000 complexes displayed longer suspension time in deionized water, up to 1 and 5 week, respectively, underlying the ability of these surfactants to effectively disperse SWNTs in an aqueous environment. In vitro cell viability assays on human dermal fibroblast cells also showed the low cytotoxicity of these two samples, even at high concentrations. In conclusion, synthesized nanocarriers have a great potential for drug delivery systems, with high loading capacity, and excellent complex stability in water critical for biocompatibility.
Collapse
Affiliation(s)
- Yesim Yeniyurt
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sila Kilic
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | | | - Serdar Bozoglu
- Energy Institute, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Mehdi Meran
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Elif Baysak
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Nilgun Karatepe
- Energy Institute, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Saime Batirel
- Department of Medical Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - F. Seniha Güner
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Istanbul, Turkey
| |
Collapse
|
10
|
Sloand JN, Miller MA, Medina SH. Fluorinated peptide biomaterials. Pept Sci (Hoboken) 2021; 113:e24184. [PMID: 34541446 PMCID: PMC8448251 DOI: 10.1002/pep2.24184] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Fluorinated compounds, while rarely used by nature, are emerging as fundamental ingredients in biomedical research, with applications in drug discovery, metabolomics, biospectroscopy, and, as the focus of this review, peptide/protein engineering. Leveraging the fluorous effect to direct peptide assembly has evolved an entirely new class of organofluorine building blocks from which unique and bioactive materials can be constructed. Here, we discuss three distinct peptide fluorination strategies used to design and induce peptide assembly into nano-, micro-, and macrosupramolecular states that potentiate high-ordered organization into material scaffolds. These fluorine-tailored peptide assemblies employ the unique fluorous environment to boost biofunctionality for a broad range of applications, from drug delivery to antibacterial coatings. This review provides foundational tactics for peptide fluorination and discusses the utility of these fluorous-directed hierarchical structures as material platforms in diverse biomedical applications.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Michael A Miller
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
12
|
Zennifer A, Sekar MP, Subramanian A, Sethuraman S. Nanofiber matrices of protein mimetic bioactive peptides for biomedical applications. ARTIFICIAL PROTEIN AND PEPTIDE NANOFIBERS 2020:199-217. [DOI: 10.1016/b978-0-08-102850-6.00009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
13
|
Li M, Ning Y, Chen J, Duan X, Song N, Ding D, Su X, Yu Z. Proline Isomerization-Regulated Tumor Microenvironment-Adaptable Self-Assembly of Peptides for Enhanced Therapeutic Efficacy. NANO LETTERS 2019; 19:7965-7976. [PMID: 31596096 DOI: 10.1021/acs.nanolett.9b03136] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomedicines have been demonstrated as promising strategies for cancer therapy due to the advantages in pharmacokinetics and drug targeting delivery to tumor tissues. However, creation of delivery platforms able to intrinsically and spatially optimize drug cellular uptake during the entire delivering process remain challenging. To address this challenge, here we report on tumor microenvironment-adaptable self-assembly (TMAS) of pentapeptides regulated by the pH-sensitive cis/trans isomerization of 4-amino-proline (Amp) amide bonds for enhanced drug delivery and photodynamic therapeutic (PDT) efficacy. We found that decreasing solution pH led to the cis → trans isomerization of Amp amide bonds, thus promoting reversible self-assembly of pentapeptide FF-Amp-FF (AmpF) into superhelices and nanoparticles upon alternating exposure to neutral and mild acidic conditions. Co-assembly of peptide AmpF with its derivative containing a photosensitizer Chlorin e6 (AmpF-C) allows for creation of TMAS systems undergoing a morphological transition adaptable to the pH gradient present in cellular uptake pathway. Ex vivo studies revealed that TMAS nanomedicines prolonged circulation in the animal body and improved accumulation at tumor sites compared to morphology-persistent nanomedicines. In addition to the optimized cellular uptake, the morphological transition of TMAS into nanofibers in cytoplasm caused an enhanced intracellular ROS level compared to nanoparticle counterparts, thus leading to a lowered half lethal dose value for cancer cells. The combined advantages of TMAS eventually allowed in vivo PDT therapy for significant inhibition of tumor growth, thus demonstrating the improved drug delivery efficiency and therapeutic efficacy of TMAS systems toward new-generation nanomedicines.
Collapse
Affiliation(s)
- Mingming Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Yashan Ning
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Jialiang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Xuncheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| |
Collapse
|
14
|
Abdelrahman A, Gouda AS, Jørgensen PT, Wengel J. Novel assemblies based on oligonucleotides containing intercalating nucleic acid monomers. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:82-96. [PMID: 31674270 DOI: 10.1080/15257770.2019.1683188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This is the first report exploring the capability of twisted intercalating nucleic acid (TINA) and naphthalene-functionalized non-nucleosidic linkers to stabilize and engage in double-helical structures. Four designs were studied with respect to the formation of duplexes and/or other types of self-assemblies. One of the constructs involving TINA provides a thermostable duplex. The biophysical properties of the individual constructs were investigated by UV thermal melting experiments, circular dichroism, and fluorescence emission spectroscopy. Molecular modeling studies were performed in attempts of explaining the biophysical measurements for the duplex based on the TINA-containing oligonucleotide strands.
Collapse
Affiliation(s)
- Asmaa Abdelrahman
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.,Department of Photochemistry, National Research Centre, Giza, Egypt
| | - Alaa S Gouda
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.,Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
| | - Per T Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|