1
|
Pal GC, Agrawal M, Siddhartha SS, Sharma CS. Damping the jump of coalescing droplets through substrate compliance. SOFT MATTER 2024; 20:6361-6370. [PMID: 39076071 DOI: 10.1039/d4sm00643g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Sessile droplets coalescing on superhydrophobic surfaces result in spontaneous droplet jumping. Here, through coalescence experiments and fluid-structure interaction simulations for microliter droplets, we demonstrate that such droplet jumping can be damped if the underlying substrate is designed to be compliant. We show that a compliant superhydrophobic substrate with synergistic combinations of low stiffness and inertia deforms rapidly during the coalescence process to minimize the substrate reaction, thus diminishing the jumping velocity. A spring-mass system model for coalescing water droplets is proposed that successfully captures droplet motion and substrate deformation for a wide range of compliant superhydrophobic substrates. These insights can be leveraged to improve the process efficiency in multiple applications, such as designing compliant superhydrophobic substrates for minimizing the scattering of small, nanoliter-sized droplets during atmospheric water harvesting. Lastly, experiments on an exemplar butterfly wing show that droplet jumping velocity reduction can also manifest on natural superhydrophobic substrates due to their inherent compliance.
Collapse
Affiliation(s)
- Gopal Chandra Pal
- Thermofluidics Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India.
| | - Manish Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India
| | - Saladi Satya Siddhartha
- Thermofluidics Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India.
| | - Chander Shekhar Sharma
- Thermofluidics Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
2
|
Tang S, Li Q, Li W, Chen S. Enhancement and Predictable Guidance of Coalescence-Induced Droplet Jumping on V-Shaped Superhydrophobic Surfaces with a Ridge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39133052 DOI: 10.1021/acs.langmuir.4c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Coalescence-induced droplet jumping has attracted significant attention in recent years. However, achieving a high jumping velocity while predictably regulating the jumping direction of the merged droplets by simple superhydrophobic structures remains a challenge. In this work, a novel V-shaped superhydrophobic surface with a ridge is conceived for enhanced and predictably guided coalescence-induced droplet jumping. By conducting experiments and lattice Boltzmann simulations, it is found that the presence of a ridge in the V-shaped superhydrophobic surface can modify the fluid dynamics during the droplet coalescence process, resulting in a much higher droplet jumping velocity than that achieved by the V-shaped superhydrophobic surface without a ridge. The enhancement of the droplet jumping velocity is mainly attributed to the combined effect of the earlier and more sufficient impingement between the liquid bridge and the ridge, as well as the accelerated droplet contraction by redirecting the internal liquid flow toward the jumping direction. A high normalized jumping velocity of V j * ≈ 0.71 is achieved by the newly designed surface, with a 930% increase in the energy conversion efficiency in comparison with that on a flat surface. Moreover, adjusting the opening direction of the V-groove at different groove angles is found to be an effective method to regulate the droplet jumping direction and expand the range of the jumping angle. Particularly, the droplet jumping angle can be well predicted based on the rotational angle (ω) and the groove angle (α), i.e., θj,p ≈ 90° - 0.5α - ω.
Collapse
Affiliation(s)
- Shi Tang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wanxin Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Shoutian Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Zhang S, Zhao L, Yu M, Guo J, Liu C, Zhu C, Zhao M, Huang Y, Zheng Y. Measurement Methods for Droplet Adhesion Characteristics and Micrometer-Scale Quantification of Contact Angle on Superhydrophobic Surfaces: Challenges and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9873-9891. [PMID: 38695884 DOI: 10.1021/acs.langmuir.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Inspired by nature, superhydrophobic surfaces have been widely studied. Usually the wettability of a superhydrophobic surface is quantified by the macroscopic contact angle. However, this method has various limitations, especially for precision micro devices with superhydrophobic surfaces, such as biomimetic artificial compound eyes and biomimetic water strider robots. These precision micro devices with superhydrophobic surfaces proposed a higher demand for the quantification of contact angles, requiring contact angle quantification technology to have micrometer-scale measurement capabilities. In this review, it is proposed to achieve micrometer-scale quantification of superhydrophobic surface contact angles through droplet adhesion characteristics (adhesion force and contact radius). Existing contact angle quantification techniques and droplet characteristics' measurement methods were described in detail. The advancement of micrometer-scale quantification technology for the contact angle of superhydrophobic surfaces will enhance our understanding of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lingzhe Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meike Yu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chunyuan Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yinguo Huang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Liu C, Zhao M, Guo J, Zhang S, Song L, Zheng Y. Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2278-2287. [PMID: 38237057 DOI: 10.1021/acs.langmuir.3c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The sweeping effect of merged droplets plays a key role in enhancing application performance due to the continuing coalescence caused by the horizontal jumping velocity. Most studies focused on static droplet coalescence jumping, while moving droplet coalescence is poorly understood. In this work, we experimentally and numerically study the coalescence of a rolling droplet and a static one. When the droplet radius ratio is larger than 0.8, as the dimensionless initial velocity increases and the vertical jumping velocity first decreases and then increases. The critical dimensionless initial velocity Vc* corresponding to the minimum vertical jumping velocity could be estimated as 0.9 ( r s 2 r m 2 ) . When the droplet radius ratio is smaller than 0.8, the dimensionless initial velocity has a positive effect on the vertical jumping velocity. The mechanism of the vertical jumping velocity can be attributed to two parts: liquid bridge impact and retraction of the merged droplet. The squeezing effect generated by the initial velocity between the two droplets promotes the growth of the liquid bridge and enhances the impact effect of the liquid bridge but weakens the upward velocity accumulation caused by the retraction of the merged droplets. However, different from the vertical jumping velocity, the horizontal jumping velocity is approximately proportional to the dimensionless initial velocity. The outcome of our work elucidates a fundamental understanding of a rolling droplet coalescing with a static one.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
5
|
Hou H, Wu X, Hu Z, Gao S, Yuan Z. Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with Annular Wedge-Shaped Micropillar Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18825-18833. [PMID: 38096374 DOI: 10.1021/acs.langmuir.3c02534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The coalescence-induced droplet jumping on superhydrophobic surfaces has extensive application potential in water harvesting, thermal management of electronic devices, and microfluidics. The rational design of the surface structure can influence the interaction between the droplet and the surface, thereby controlling the velocity and direction of the droplet's jumping. In this study, we fabricate the superhydrophobic surface with annular wedge-shaped micropillar arrays, examine the dynamic behavior of condensate droplets on the surface, and measure the temporal and spatial variations of droplet density, average radius, and surface coverage with wedge-shaped micropillars of varying sizes. In addition, the energy analysis of the coalescence-induced droplet jumping reveals that the two primary factors influencing the jumping are the relative size and position of the droplets and micropillars. Further numerical simulations find that the wedge-shaped micropillars cause an asymmetric distribution of pressure within the droplet and at the solid-liquid contact surface, which generates an unbalanced force driving the droplet in the gradient direction of the wedge-shaped micropillar, causing the droplet to jump off the surface with both vertical and gradient-direction velocities. The capacity of the wedge-shaped micropillar surface to transport droplets in the gradient direction increases and then decreases as the relative size of the droplets and micropillars increases. The relative position of the droplet center-of-mass line perpendicular to the bottom edge of the wedge micropillars' trapezoidal shape is more favorable for droplet transport. This work reveals the influence mechanism of surface structure on the velocity and direction of droplet jumping, and the results can guide the microstructure design of superhydrophobic surfaces, which has significant implications for the application of droplet jumping.
Collapse
Affiliation(s)
- Huimin Hou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sihang Gao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiping Yuan
- Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Hou H, Wu X, Hu Z, Gao S, Wu Y, Lin Y, Dai L, Zou G, Liu L, Yuan Z. High-speed directional transport of condensate droplets on superhydrophobic saw-tooth surfaces. J Colloid Interface Sci 2023; 649:290-301. [PMID: 37352560 DOI: 10.1016/j.jcis.2023.06.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
HYPOTHESIS Most droplets on high-efficiency condensing surfaces have radii of less than 100 μm, but conventional droplet transport methods (such as wettability-gradient surfaces and structural-curvature-gradient surfaces) that rely on the unbalanced force of three-phase lines can only transport millimeter-sized droplets efficiently. Regulating high-speed directional transport of condensate droplets is still challenging. Therefore, we present a method for condensate droplet transportation, based on the reaction force of the superhydrophobic saw-tooth surfaces to the liquid bridge, the condensate droplets could be transported at high speed and over long distances. EXPERIMENTS The superhydrophobic saw-tooth surfaces are fabricated by femtosecond laser ablation and chemical etching. Condensation experiments and luminescent particle characterization experiments on different surfaces are conducted. Aided by the theoretical analysis, we illustrate the remarkable performance of condensate droplet transportation on saw-tooth surfaces. FINDINGS Compared with conventional methods, our method improves the transport velocity and relative transport distance by 1-2 orders of magnitude and achieves directional transport of the smallest condensate droplet of about 2 μm. Furthermore, the superhydrophobic saw-tooth surfaces enable multi-hop directional jumping of condensate droplets, leading to cross-scale increases in transport distances from microns to decimeters.
Collapse
Affiliation(s)
- Huimin Hou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhifeng Hu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Sihang Gao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Yuxi Wu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yukai Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Liyu Dai
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Guisheng Zou
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiping Yuan
- Department of Energy and Power Engineering, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Qiu L, Qian S, Ni Y, Tong Q. Optimum substrate stiffness in coalescence-induced droplet jumping. Phys Chem Chem Phys 2023; 25:14368-14373. [PMID: 37183923 DOI: 10.1039/d3cp00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
When droplets are brought into contact and coalesced on a superhydrophobic surface, the kinetic energy converted from the surface energy enables the merged droplet to jump. Current studies mainly focus on the microstructure of surfaces and the properties of droplets that influence the jumping dynamics. Here, by means of molecular dynamics, we investigate the coalescence-induced jumping of nanodroplets on soft substrates. The optimum stiffness of the substrate is suggested and the mechanism involved is demonstrated through the analysis of the interactions between the droplets and the substrates. The momentum of the droplet is evaluated by integrating the forces from the substrate. The optimum stiffness for jumping velocity is provided by the competition between the impact and the adhesion from the substrate during the process, which are both closely related to the stiffness. The results may inspire fundamental research and applications in a broad scope.
Collapse
Affiliation(s)
- Lianfu Qiu
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China.
| | - Sheng Qian
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China.
| | - Yifeng Ni
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China.
- Shanghai Minghua Electric Power Science & Technology Co., Ltd., Shanghai 200090, China
| | - Qi Tong
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Zhang S, Zhao M, Huang Y, Sun Y, Liu C, Yu M, Zheng Y. Measuring the Adhesion Force and the Spreading Radius between Droplets and a Solid Surface during Short-Time Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5179-5186. [PMID: 36989060 DOI: 10.1021/acs.langmuir.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
When a droplet contacts a solid surface, the liquid spreads over the solid surface to minimize the total surface energy. This phenomenon is widespread in industrial production and nature, so research on droplet spreading is of great significance. Here, the adhesion force and the spreading radius during droplet spreading can be quantified using a highly sensitive photoelectric method. It is possible to study droplet spreading from two dimensions at the microscale. The adhesion force is measured by an optical lever, and the spreading radius is measured by an ultrafast electrical method. The measurement method allows the force resolution and the space-time resolution to reach the nanonewton lever and the nanosecond lever, respectively. We obtain the maximum spreading radius and the maximum adhesion force during short-time spreading through our technique. Moreover, we numerically simulate the droplet spreading process through the lattice Boltzmann solver and confirm the observed results. This study provides a new experimental technique for studying droplet spreading dynamics from multiple perspectives, which can deepen our understanding of droplet spreading and provide guidance for the development of new techniques.
Collapse
Affiliation(s)
- Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yinguo Huang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meike Yu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Zhu S, Ren H, Li X, Xiao Y, Li C. Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact position. Phys Chem Chem Phys 2023; 25:4969-4979. [PMID: 36722908 DOI: 10.1039/d2cp04608c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The impact behaviors of droplets on nanostructure-arrayed surfaces are ubiquitous in nature and engineering applications. And the influence of the impact position of a droplet on its bouncing dynamics is of great significance since there is inevitable randomness in the impact position of droplets on the surface of nanostructured arrays, but the difference in the dynamics process caused by this randomness has not been recognized. Here, by using molecular dynamics simulations, the effect of impact position on the bouncing dynamics of a water droplet on nanopillar-arrayed surfaces is systematically investigated. The simulation results highlight that the impact position plays an important role in droplet dynamics after impact, especially at the retraction stage, and the effect of impact position on the bouncing behavior is highly sensitive to the impact velocity. Importantly, from the point of energy conversion, the droplet deformation and contact state jointly determine whether the droplet can bounce back or not, which reveals the mechanism of impact position effects on the bouncing behavior of the droplet. Interestingly, the effect of impact position would be weakened with an increase in the size ratio of the droplet diameter to nanopillar spacing, and this effect becomes negligible when the size ratio is greater than 5.2. These findings demonstrate the key role played by the impact position and may provide new insights into the practical application of nanostructure-arrayed surfaces.
Collapse
Affiliation(s)
- Shengya Zhu
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hongru Ren
- School of Science, Chang'an University, Xi'an 710064, China
| | - Xuhao Li
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ye Xiao
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Chun Li
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
10
|
Coalescence-induced jumping of in-plane moving droplets: Effects of initial velocity and sideslip angle. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Li Y, Du J, Wu X, Lu G, Min Q. How macrostructures enhance droplet coalescence jumping: A mechanism study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Li T. Coalescence-Induced Jumping for Removing the Deposited Heterogeneous Droplets: A Molecular Dynamics Simulation Study. J Phys Chem B 2022; 126:8030-8038. [PMID: 36174232 DOI: 10.1021/acs.jpcb.2c05570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The removal of the deposited droplets on a solid surface is crucial to considerable practical applications that require self-cleaning properties. In this work, a strategy of cleaning a deposited droplet ("D-droplet") by coalescing with a heterogeneous and easily jumping droplet ("J-droplet") is proposed. Molecular dynamics simulation studies have shown that the coalescence of these two kinds of droplets would not guarantee the removal of D-droplet, unless the lifting ability of J-droplet is enhanced through the reduction of the solid-liquid interaction. However, this is a bad scenario with low efficiency. Further investigation suggests that by introducing two J-droplets to produce triple-coalescence dynamics, the D-droplet could be successfully jumping from the substrates due to the coalescence-induced effect, which is also verified by the free energy calculation. Moreover, the effects of the size of the droplets and the arrangement mode of these three droplets on the jumping dynamics are both considered. The studies not only help advance our understanding of coalescence-induced jumping of heterogeneous droplets, but also open up new ways to remove the deposited impure droplets, which is expected to guide the fields of self-cleaning.
Collapse
Affiliation(s)
- Tao Li
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong999077, China
| |
Collapse
|
13
|
Kowalski NG, Boreyko JB. Dynamics of fog droplets on a harp wire. SOFT MATTER 2022; 18:7148-7158. [PMID: 36093935 DOI: 10.1039/d2sm00674j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fog harps effectively drain small droplets, which prevents clogging and results in more water harvested from fog compared to mesh nets. However, the dynamics of fog droplets coalescing and sliding down a vertical wire remain poorly understood. Here, we develop an analytical model that captures the physics of fog droplets draining down a single vertical wire. The driving forces are gravity and the surface energy released from coalescence events, whereas the dominant resisting forces are revealed to be inertia, contact angle hysteresis, and local viscous dissipation within the droplet's receding wedge. The average sliding velocity of fog droplets on a Teflon-coated wire was only half that of an uncoated stainless steel wire, due to non-coalescence events exclusive to the hydrophobic wire disrupting the momentum of droplet sliding.
Collapse
Affiliation(s)
- Nicholas G Kowalski
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Jonathan B Boreyko
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
14
|
Gao Y, Ke Z, Yang W, Wang Z, Zhang Y, Wu W. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9981-9991. [PMID: 35917142 DOI: 10.1021/acs.langmuir.2c01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Condensation-induced jumping of droplets on superhydrophobic surfaces has received extensive attention because of its great potential for applications in areas such as condensation enhancement and self-cleaning. However, the jumping efficiency of droplets on flat superhydrophobic surfaces is very low, and there is no reliable means of achieving efficient droplet jumping on large scales, which greatly limits its application. To this end, we developed a class of honeycomb bionic superhydrophobic surfaces (HBSS) that enable reliable and efficient droplet jumping on a large scale for the first time and performed experimental and simulation studies on droplet condensation and jumping on this kind of surface. Condensation experiments show that condensate droplets on HBSS can be effectively positioned under the influence of gravity and the uniformity of the droplet diameter is ensured, laying the foundation for achieving efficient jumping. The shape and geometric parameters of HBSS have a significant impact on the droplet jumping efficiency, and the maximum dimensionless jumping velocity of droplet jumping was experimentally measured to be 0.747, corresponding to an efficiency of about 45.25%. Combining with the results of simulation calculations, we found that the surface structure of HBSS can promote more of the excess surface energy to net upward kinetic energy along an extremely efficient and simple pathway (direct conversion), thus achieving an energy conversion efficiency of over 45%.
Collapse
Affiliation(s)
- Yan Gao
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zhaoqing Ke
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wei Yang
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zhiqiang Wang
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying Zhang
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wei Wu
- ALD Research Institute, ALD Group Limited, Shenzhen 518108, Guangdong, China
| |
Collapse
|
15
|
Coalescence‐induced jumping of microdroplets on superhydrophobic surfaces – A numerical study. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Wang X, Xu B, Chen Z, Del Col D, Li D, Zhang L, Mou X, Liu Q, Yang Y, Cao Q. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications. Adv Colloid Interface Sci 2022; 305:102684. [PMID: 35525088 DOI: 10.1016/j.cis.2022.102684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023]
Abstract
Droplet dynamics and condensation phenomena are widespread in nature and industrial applications, and the fundamentals of various technological applications. Currently, with the rapid development of interfacial materials, microfluidics, micro/nano fabrication technology, as well as the intersection of fluid mechanics, interfacial mechanics, heat and mass transfer, thermodynamics and reaction kinetics and other disciplines, the preparation and design of various novel functional surfaces have contributed to the local modulation of droplets (including nucleation, jumping and directional migration) and the improvement of condensation heat transfer, further deepening the understanding of relevant mechanisms. The wetting and dynamic characteristics of droplets involve complex solid-liquid interfacial interactions, so that the local modulation of microdroplets and the extension of enhanced condensation heat transfer by means of complex micro/nano structures and hydrophilic/hydrophobic properties is one of the current hot topics in heat and mass transfer research. This work presents a detailed review of several scientific issues related to the droplet dynamics and dropwise condensation heat transfer under the influence of multiple factors (including fluid property, surface structure, wettability, temperature external field, etc.). Firstly, the basic theory of droplet wetting on the solid wall is introduced, and the mechanism of solid-liquid interfacial interaction involving droplet jumping and directional migration on the functional surfaces under the various influencing factors is discussed. Optimizing the surface structure for the local modulation of droplets is of guidance for condensation heat transfer. Secondly, we summarize the existing theoretical models of dropwise condensation applicable to various functional surfaces and briefly outline the current numerical models for simulating dropwise condensation at different scales, as well as the fabricating techniques of coatings and functional surfaces for enhancing heat transfer. Finally, the relevant problems and challenges are summarized and future research is discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, PR China; Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, PR China.
| | - Davide Del Col
- Department of Industrial Engineering, University of Padua, Italy
| | - Dong Li
- School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Leigang Zhang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Xinzhu Mou
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Qiusheng Liu
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, PR China
| | - Yang Yang
- Engineering and technology center for space applications, Chinese academy of sciences, Beijing, PR China
| | - Qian Cao
- Engineering and technology center for space applications, Chinese academy of sciences, Beijing, PR China
| |
Collapse
|
17
|
Liu C, Zhao M, Lu D, Sun Y, Song L, Zheng Y. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6923-6933. [PMID: 35451848 DOI: 10.1021/acs.langmuir.2c00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coalescence-induced droplet jumping has great prospects in many applications. Nevertheless, the applications are vastly limited by a low jumping velocity. Conventional methods to enhance the droplet coalescence jumping velocity are enabled by protruding structures with superhydrophobic surfaces. However, the jumping velocity improvement is limited by the height of protruding structures. Here, we present rationally designed limitation structures with superhydrophobic surfaces to achieve a dimensionless jumping velocity, Vj* ≈ 0.64. The mechanism of enhancing the jumping velocity is demonstrated through the study of numerical simulations and geometric parameters of limitation structures, providing guidelines for optimized structures. Experimental and numerical results indicate that the mechanism consists of the combined action of the velocity vectors' redirection and the Laplace pressure difference within deformed droplets trapped in limitation structures. On the basis of previous research on the mechanisms of protruding structures and our study, we successfully exploited those mechanisms to further improve the jumping velocity by combining the limitation structure with the protruding structure. Experimentally, we attained a dimensionless jumping velocity of Vj* ≈ 0.74 with an energy conversion efficiency of η ≈ 48%, breaking the jumping velocity limit. This work not only demonstrates a new mechanism for achieving a high jumping velocity and energy conversion efficiency but also sheds lights on the effect of limitation structures on coalescence hydrodynamics and elucidates a method to further enhance the jumping velocity based on protruding structures.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dunqiang Lu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
18
|
Liu Y, Li X, Lu C, Yuan Z, Liu C, Zhang J, Zhao L. High-Efficiency Directional Ejection of Coalesced Drops on a Circular Groove. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4028-4035. [PMID: 35319209 DOI: 10.1021/acs.langmuir.2c00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coalescence-induced drop jumping has received significant attention in the past decade. However, its application remains challenging as a result of the low energy conversion efficiency and uncontrollable drop jumping direction. In this work, we report the high-efficiency coalescence-induced drop jumping with tunable jumping direction via rationally designed millimeter-sized circular grooves. By increasing the surface-droplet impact site area and restricting the oscillatory deformation, the energy conversion efficiency of the jumping droplet reaches 43.5%, 600% as high as the conventional superhydrophobic surfaces. The droplet jumping direction can be tuned from 90° to 60° by varying the principal curvature of the circular groove, while the energy conversion efficiency remains unchanged. We show through theoretical analysis and numerical simulations that the directional jumping mainly originates from reallocation of droplet momentum enabled by the asymmetric liquid bridge impact. Our study demonstrates a simple yet effective method for fast, efficient, and directional droplet removal, which warrants promising applications in jumping droplet condensation, water harvesting, anti-icing, and self-cleaning.
Collapse
Affiliation(s)
- Yahua Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin 130022, People's Republic of China
| | - Xiaojie Li
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Chenguang Lu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Zichao Yuan
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Cong Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin 130022, People's Republic of China
| | - Lei Zhao
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
19
|
Liu C, Zhao M, Zheng Y, Lu D, Song L. Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32542-32554. [PMID: 34180653 DOI: 10.1021/acsami.1c08142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coalescence-induced droplet jumping has received considerable attention owing to its potential to enhance performance in various applications. However, the energy conversion efficiency of droplet coalescence jumping is very low and the jumping direction is uncontrollable, which vastly limits the application of droplet coalescence jumping. In this work, we used superhydrophobic surfaces with a U-groove to experimentally achieve a high dimensionless jumping velocity Vj* ≈ 0.70, with an energy conversion efficiency η ≈ 43%, about a 900% increase in energy conversion efficiency compared to droplet coalescence jumping on flat superhydrophobic surfaces. Numerical simulation and experimental data indicated that a higher jumping velocity arises from the redirection of in-plane velocity vectors to out-of-plane velocity vectors, which is a joint effect resulting from the redirection of velocity vectors in the coalescence direction and the redirection of velocity vectors of the liquid bridge by limiting maximum deformation of the liquid bridge. Furthermore, the jumping direction of merged droplets could be easily controlled ranging from 17 to 90° by adjusting the opening direction of the U-groove, with a jumping velocity Vj* ≥ 0.70. When the opening direction is 60°, the jumping direction shows a deviation as low as 17° from the horizontal surface with a jumping velocity Vj* ≈ 0.73 and corresponding energy conversion efficiency η ≈ 46%. This work not only improves jumping velocity and energy conversion efficiency but also demonstrates the effect of the U-groove on coalescence dynamics and demonstrates a method to further control the droplet jumping direction for enhanced performance in applications.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dunqiang Lu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
20
|
Wang Z, Wang X, Miao Q, Gao F, Zhao YP. Spontaneous Motion and Rotation of Acid Droplets on the Surface of a Liquid Metal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4370-4379. [PMID: 33792321 DOI: 10.1021/acs.langmuir.1c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-propulsion of droplets is of great significance in many fields. The spontaneous horizontal motion and self-jumping of droplets have been well realized in various ways. However, there is still a lack of an effective method to enable a droplet to rotate spontaneously and steadily. In this paper, by employing an acid droplet and a liquid metal, the spontaneous and steady rotation of droplets is achieved. For an acid droplet, it may spontaneously move when it is deposited on the surface of the liquid metal. By adjusting experimental parameters to the proper range, the self-rotation of droplet happens. This phenomenon originates from the fluctuation of the droplet boundary and the collective movement of bubbles that are generated by the chemical reactions between the acid droplet and liquid metal. This rotation has a simpler implementation method and more steady rotation state. Its angular velocity is much higher than that driven by other mechanisms. Moreover, the movements of acid droplets on the liquid metal are classified according to experimental conditions. The internal flow fields, the movements and distribution of bubbles, and the fluctuation of the droplet boundary are also explored and discussed. The theoretical model describing the rotational droplet is given. Our work may deepen the understanding of the physical system transition affected by chemical reactions and provide a new way for the design of potential applications, e.g., micro- and nanodevices.
Collapse
Affiliation(s)
- Zhanlong Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaohe Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qing Miao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Feifei Gao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ya-Pu Zhao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
21
|
Wang K, Ma X, Chen F, Lan Z. Effect of a Superhydrophobic Surface Structure on Droplet Jumping Velocity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1779-1787. [PMID: 33502854 DOI: 10.1021/acs.langmuir.0c03094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coalescence-induced droplet jumping on superhydrophobic surfaces is fundamentally significant from an academic or practical viewpoint. However, approaches to enhance droplet jumping velocity are very limited. In this work, the effect of structural parameters of the triangular prism on droplet jumping is studied systematically. The results indicate that droplet jumping velocity can be greatly increased by exploiting structure effects, which is a promising reinforcement method. When the height and apex angle of the triangular prism are fixed, the droplet jumping velocity increases with the length of the triangular prism until a plateau is reached. The ratio of translational kinetic energy to released surface energy during droplet jumping is determined by the apex angle and the height of the triangular prism, which is more effective with a smaller apex angle and a larger height. The results are supposed to provide guidelines for optimization of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Kai Wang
- Research Institute of Small Domestic Appliance Division, Midea Group, Foshan 528311, China
- Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuehu Ma
- Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Feifan Chen
- Research Institute of Small Domestic Appliance Division, Midea Group, Foshan 528311, China
| | - Zhong Lan
- Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH. Coalescence-Induced Droplet Jumping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:983-1000. [PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Luya Cheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiale Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Clarence Augustine T H Tee
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
23
|
Ma Z, Ai J, Shi Y, Wang K, Su B. A Superhydrophobic Droplet-Based Magnetoelectric Hybrid System to Generate Electricity and Collect Water Simultaneously. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2006839. [PMID: 33179284 DOI: 10.1002/adma.202006839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Traditional electromagnetic generators used in hydraulic power generation are heavy, bulky, and immovable, and are thus unsuitable for low water supply. A portable miniature electromagnetic system that can harvest energy from rainwater is critical for developing a sustainable energy strategy. In this study, a superhydrophobic droplet-based magnetoelectric hybrid system is fabricated, that can generate electricity from tiny water droplets. The magnetoelectric system (MS) comprises three parts: a superhydrophobic surface containing a conductive coil, liquid droplets, and a superhydrophobic magnetic powders/Ecoflex base. The mechanical impact of a falling water droplet onto the assembled system is transformed into electricity. Maxwell numerical simulation is used to analyze the related mechanism; the magnetoelectric performance is further improved by modifying the process parameters such as droplet falling velocity and magnetic powder contents. Furthermore, a model is developed, comprising the MS and a cactus-like superhydrophobic patterned plate that can generate electricity and collect water from fog, simultaneously. The described magnetoelectric strategy is believed to enhance and extend functions in energy harvesting and provide a generalized method to exploit new systems toward sustainable energy development.
Collapse
Affiliation(s)
- Zheng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jingwei Ai
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunsong Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kun Wang
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
24
|
Peng Q, Yan X, Li J, Li L, Cha H, Ding Y, Dang C, Jia L, Miljkovic N. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9510-9522. [PMID: 32689802 DOI: 10.1021/acs.langmuir.0c01494] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coalescence-induced droplet jumping has the potential to enhance the performance of a variety of applications including condensation heat transfer, surface self-cleaning, anti-icing, and defrosting to name a few. Here, we study droplet jumping on hierarchical microgrooved and nanostructured smooth superhydrophobic surfaces. We show that the confined microgroove structures play a key role in tailoring droplet coalescence hydrodynamics, which in turn affects the droplet jumping velocity and energy conversion efficiency. We observed self-jumping of individual deformed droplets within microgrooves having maximum surface-to-kinetic energy conversion efficiency of 8%. Furthermore, various coalescence-induced jumping modes were observed on the hierarchical microgrooved superhydrophobic surface. The microgroove structure enabled high droplet jumping velocity (≈0.74U) and energy conversion efficiency (≈46%) by enabling the coalescence of deformed droplets in microgrooves with undeformed droplets on adjacent plateaus. The jumping velocity and energy conversion efficiency enhancements are 1.93× and 6.67× higher than traditional coalescence-induced droplet jumping on smooth superhydrophobic surfaces. This work not only demonstrates high droplet jumping velocity and energy conversion efficiency but also demonstrates the key role played by macroscale structures on coalescence hydrodynamics and elucidates a method to further control droplet jumping physics for a plethora of applications.
Collapse
Affiliation(s)
- Qi Peng
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Xiao Yan
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jiaqi Li
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Longnan Li
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Hyeongyun Cha
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Yi Ding
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chao Dang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Li Jia
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Contact Time of Double-Droplet Impacting Superhydrophobic Surfaces with Different Macrotextures. Processes (Basel) 2020. [DOI: 10.3390/pr8080896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The contact time of droplets on superhydrophobic surfaces is an especially important parameter in many applications, such as self-cleaning, anti-icing, and spray cooling. In this study, we investigate the contact time of two identical droplets simultaneously impacting superhydrophobic surfaces decorated with three different macrotextures, i.e., bathtub-like groove (S1), vertical wall (S2), and rectangular ridge (S3), via lattice Boltzmann method (LBM) simulations. We explore influences of the geometrical parameters of the macrotextures, as well as the center-to-center distance of the two droplets, on the contact time. We found a new rebounding regime with significantly reduced contact times. We demonstrate that, as compared with impacting a smooth superhydrophobic surface, the contact time can be decreased by 41% for macrotexture S1 because of the asymmetric spreading and retraction of droplets motivated by the macrotexture. We also demonstrate that the new regime depends on the center-to-center distance and geometrical parameters of the macrotextures.
Collapse
|