1
|
Ni M, Gui S, Fu Y, Peng Y, Ding Q. Synthesis of 2,4-Dicyanoalkylated Benzoxazines through the Radical-Mediated Cascade Cyclization of Isocyanides with AIBN under Metal- and Additive-Free Conditions. J Org Chem 2024; 89:3970-3976. [PMID: 38422048 DOI: 10.1021/acs.joc.3c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A general and novel method for the radical cascade cyclization of aryl isocyanides with AIBN has been described. This strategy provides straightforward access to various 2,4-dicyanoalkylated benzoxazines in moderate to good yields under metal- and additive-free conditions. The reaction can apply to a gram scale and tolerate diverse functional groups. 2,4-Dicyanoalkylated benzoxazine derivatives feature a large Stokes shift and intramolecular charge transfer properties.
Collapse
Affiliation(s)
- Mengjia Ni
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Shuanggen Gui
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yang Fu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yiyuan Peng
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Qiuping Ding
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
2
|
Ohsedo Y, Kaneizumi A. The Preparation of Electrolyte Hydrogels with the Water Solubilization of Polybenzoxazine. Gels 2023; 9:819. [PMID: 37888392 PMCID: PMC10606516 DOI: 10.3390/gels9100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Polybenzoxazine (PBZ) exhibits excellent heat resistance, and PBZ derivatives have been designed and synthesized to achieve high performance. However, the application range of PBZ is limited by the strong interactions between molecular chains and its low solubility in organic solvents, thereby limiting its processability. This study focused on the benzoxazine structure as the molecular backbone of new hydrogel materials that can be applied as electrolyte materials and prepared functional gel materials. Here, we prepared hydrogels by water-solubilizing PBZ derivatives, which typically exhibit low solubility in organic solvents. Although studies on the hydrophilization of PBZ and its complexation with hydrophilic polymers have been conducted, no studies have been performed on the hydrogelation of PBZ. First, the phenol in the organic solvent-insoluble PBZ thin film obtained after the thermal ring-opening polymerization of the monomer was transformed into sodium phenoxide by immersion in a NaOH aqueous solution to water-solubilize it and obtain a hydrogel thin film. Although the hydrogel thin film exhibited low mechanical strength, a free-standing hydrogel film with improved strength was obtained through the double network gelation method with an acrylamide monomer system. The physical properties of the polymer composite hydrogel thin film were evaluated. The ionic conductivity of the hydrogel thin films was in the order of 10-4 S cm-1, indicating the potential of PBZ as an electrolyte hydrogel material. However, improving its ionic conductivity will be undertaken in future studies.
Collapse
Affiliation(s)
- Yutaka Ohsedo
- Division of Engineering, Faculty of Engineering, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Ami Kaneizumi
- Graduate School of Human Centered Engineering, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| |
Collapse
|
3
|
Yang R, Li N, Evans CJ, Yang S, Zhang K. Phosphaphenanthrene-Functionalized Benzoxazines Bearing Intramolecularly Hydrogen-Bonded Phenolic Hydroxyl: Synthesis, Structural Characterization, Polymerization Mechanism, and Property Investigation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Rui Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Corey J. Evans
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shengfu Yang
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Muraoka M, Goto M, Minami M, Zhou D, Suzuki T, Yajima T, Hayashi J, Sogawa H, Sanda F. Ethynylene-linked multifunctional benzoxazines: effect of ethynylene group and packing on thermal behavior. Polym Chem 2022. [DOI: 10.1039/d2py00840h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzoxazine is a promising next-generation thermosetting resin featuring catalyst-free curing, high thermal stability, and low volume shrinkage upon curing. Mono-, di- and tri-functional benzoxazines, 3-(4-(phenylethynyl)phenyl)-3,4-dihydro-2H-[1,3]benzoxazine (1), 1,4-bis((4-(2H-3(4H)-[1,3]benzoxazinyl)phenyl)ethynyl)benzene (2) and 1,3,5-tris((4-(2H-3(4H)-[1,3]benzoxazinyl)phenyl)ethynyl)benzene...
Collapse
|
5
|
Yang R, Xie L, Li N, Froimowicz P, Zhang K. Synthesis of a triptycene-containing dioxazine benzoxazine monomer and a main-chain triptycene-polydimethysiloxane-benzoxazine copolymer with excellent comprehensive properties. Polym Chem 2022. [DOI: 10.1039/d2py00244b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel triptycene-containing dioxazine benzoxazine monomer and a main-chain benzoxazine copolymer have been synthesized and their corresponding thermosets exhibit excellent thermal stability, low flammability and low dielectric constants.
Collapse
Affiliation(s)
- Rui Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xie
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pablo Froimowicz
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, subsuelo, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Kobayashi T, Muraoka M, Goto M, Minami M, Sogawa H, Sanda F. Main-chain type benzoxazine polymers consisting of polypropylene glycol and phenyleneethynylene units: spacer effect on curing behavior and thermomechanical properties. Polym J 2021. [DOI: 10.1038/s41428-021-00568-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Islam K, Narjinari H, Kumar A. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Khadimul Islam
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Himani Narjinari
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Akshai Kumar
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
- Center for Nanotechnology Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| |
Collapse
|
8
|
Zhang K, Hao B, Ishida H. Synthesis of a smart bisbenzoxazine with combined advantages of bismaleimide and benzoxazine resins and its unexpected formation of very high performance cross-linked polybenzoxazole. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Sha XL, Yuan L, Liang G, Gu A. Heat-resistant and robust biobased benzoxazine resins developed with a green synthesis strategy. Polym Chem 2021. [DOI: 10.1039/d0py01529f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two high-performance biobased benzoxazine resins from mono-phenols are developed with a green synthesis strategy.
Collapse
Affiliation(s)
- Xin-Long Sha
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Li Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Guozheng Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Aijuan Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Materials Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
10
|
Bayram K, Kiskan B, Yagci Y. Synthesis of thioamide containing polybenzoxazines by the Willgerodt–Kindler reaction. Polym Chem 2021. [DOI: 10.1039/d0py01381a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Benzoxazines with thioamide linkages were successfully prepared by the Willgerodt–Kindler route.
Collapse
Affiliation(s)
- Kamer Bayram
- Istanbul Technical University
- Department of Chemistry
- Maslak
- Turkey
| | - Baris Kiskan
- Istanbul Technical University
- Department of Chemistry
- Maslak
- Turkey
| | - Yusuf Yagci
- Istanbul Technical University
- Department of Chemistry
- Maslak
- Turkey
| |
Collapse
|
11
|
Kaya G, Kiskan B, Isci R, Eroglu MS, Ozturk T, Yagci Y. Surface modification of polybenzoxazines by electrochemical hydroquinone-quinone switch. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|