1
|
Cao P, Huang J. Influences of Coagulant Polarity on the Modulus of the Chitin Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25940-25949. [PMID: 39570335 DOI: 10.1021/acs.langmuir.4c03309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The chitin hydrogel draws great attention in biomedical fields owing to its high similarity and good affinity for peptides. The conversion of raw chitin to the designed hydrogel through a sol-gel process prevails, while the modulus of the chitin hydrogel is significantly influenced by the factors of gelation technology (i.e., coagulation, involving polymer chain rearrangement and the reconstruction of multiple interactions). Water and several organic solvents such as ethanol, DMAc, and DMSO are effective coagulants for aqueous chitin/KOH/urea solutions. In particular, the concentration of aqueous ethanol solutions displays a high dependency on the modulus of chitin hydrogels. However, recent reports about chitin hydrogel fabrication seldom demonstrate the effect of coagulant factors on hydrogel performance. Our study found that the polarity of the coagulant and its diffusion index for entry into the chitin solution during the coagulation process had a direct influence on the hydrogel modulus. The influence of the two factors was investigated to find out their quantified relationship with the hydrogel modulus, which will inspire a practical method to develop new coagulants to prepare modulus-manipulable chitin hydrogels.
Collapse
Affiliation(s)
- Peng Cao
- College of Environment and Chemical Engineering, Lanzhou Resource and Environment Vocational and Technical University, Lanzhou 730000, China
| | - Junchao Huang
- School of Materials & Energy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Guo T, Wan Z, Panahi-Sarmad M, Banvillet G, Lu Y, Zargar S, Tian J, Jiang F, Mao Y, Tu Q, Rojas OJ. Chitin Nanofibers Enable the Colloidal Dispersion of Carbon Nanomaterials in Aqueous Phase and Hybrid Material Coassembly. ACS NANO 2024; 18:14954-14967. [PMID: 38820368 DOI: 10.1021/acsnano.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Chitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system. Related effects are found to be transferable to multiwalled carbon nanotubes and graphene nanosheets. The observations explain the functionality of hybrid membranes obtained by aqueous phase processing, which benefit from an excellent areal mass distribution (correlated to piezoresistivity), also contributing to high electromechanical performance. The water resistance and flexibility of the ChNF/CNT membranes (along with its tensile strength at break of 190 MPa, conductivity of up to 426 S/cm, and piezoresistivity and light absorption properties) are conveniently combined in a device demonstration, a sunlight water evaporator. The latter is shown to present a high evaporation rate (as high as 1.425 kg water m-2 h-1 under one sun illumination) and recyclability.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gabriel Banvillet
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shiva Zargar
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Jing Tian
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Qingshi Tu
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
3
|
Dzolkifle NAN, Wan Nawawi WMF. A review on chitin dissolution as preparation for electrospinning application. Int J Biol Macromol 2024; 265:130858. [PMID: 38490398 DOI: 10.1016/j.ijbiomac.2024.130858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Electrospinning has been acknowledged as an efficient technique for the fabrication of continuous nanofibers from polymeric based materials such as polyvinyl alcohol (PVA), cellulose acetate (CA), chitin nanocrystals and others. These nanofibers exhibit chemical and mechanical stability, high porosity, functionality, high surface area and one-dimensional orientation which make it extremely beneficial in industrial application. In recent years, research on chitin - a biopolymer derived from crustacean and fungal cell wall - had gained interest due to its unique structural arrangement, excellent physical and chemical properties, in which make it biodegradable, non-toxic and biocompatible. Chitin has been widely utilized in various applications such as wound dressings, drug delivery, tissue engineering, membranes, food packaging and others. However, chitin is insoluble in most solvents due to its highly crystalline structure. An appropriate solvent system is required for dissolving chitin to maximize its application and produce a fine and smooth electrospun nanofiber. This review focuses on the preparation of chitin polymer solution through dissolution process using different types of solvent system for electrospinning process. The effect of processing parameters also discussed by highlighting some representative examples. Finally, the perspectives are presented regarding the current application of electrospun chitin nanofibers in selected fields.
Collapse
Affiliation(s)
- Nurul Alia Nabilah Dzolkifle
- Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Zhang Y, Zhang H, Chen Z, Gao J, Bi Y, Du K, Su J, Zhang D, Zhang S. Crustacean-inspired chitin-based flexible buffer layer with a helical cross-linked network for bamboo fiber/poly(3-hydroxybutyrate) biocomposites. Int J Biol Macromol 2024; 259:129248. [PMID: 38191108 DOI: 10.1016/j.ijbiomac.2024.129248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Marine biological resources, serving as a renewable and sustainable reservoir, holds significant import for the utilization of composite material. Hence, we produced bamboo fiber/poly(3-hydroxybutyrate) (BF/PHB) biocomposites with exceptional performance and economic viability, drawing inspiration from the resilience of crustacean shells. Polyaminoethyl modified chitin (PAECT) was synthesized using the alkali freeze-thaw method and introduced into the interface between BF and PHB to improve interfacial adhesion. The resulting chitin fibers, characterized by their intertwined helical chains, constructed a flexible mesh structure on the BF surface through an electrostatic self-assembly approach. The interwoven PAECT filaments infiltrated the dual-phase structure, acting as a promoter of interfacial compatibility, while the flexible chitin network provided a greater capacity for deformation accommodation. Consequently, both impact and tensile strength of the BF/PHB composites were notably enhanced. Additionally, this flexible layer ameliorated the thermal stability and crystalline properties of the composites. This investigation aimed to leverage the distinctive helical configuration of chitin to facilitate the advancement of bio-reinforced composites.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Huanrong Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenghao Chen
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jian Gao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanbin Bi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jixing Su
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Liu H, Jiang X. Structure and properties of sulfopropyl chitins prepared in NaOH/urea aqueous solutions. Carbohydr Res 2023; 534:108982. [PMID: 37976957 DOI: 10.1016/j.carres.2023.108982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
A series of sulfopropyl chitins (SCs) with the degree of substitution (DS) ranging from 0.11 to 0.40 and high degree of acetylation (DA ≥ 0.82) were homogeneously synthesized by reacting chitin with sodium 3-chloro-2-hydroxypropanesulfonate (SCHPS) in NaOH/urea aqueous solutions under mild conditions. The structure and properties of SCs were characterized with 1H NMR, CP/MAS 13C NMR, FT-IR, XPS, XRD, elemental analysis, GPC, AFM, ζ-potential and rheological measurements. The mild reaction conditions resulted in less N-deacetylation and uniform structures with substitution occurring predominantly at the hydroxyl groups at C6 of the chitin backbone. The DS value for SC soluble in dilute alkali solution is as low as 0.16. SC exhibited good solubility in distilled water when its DS value reached 0.28. Water-soluble SCs self-assembled in water into micelles by the attractive hydrophobic and hydrogen-bonding interactions between polymer chains. The water-insoluble SC-2 with lower DS could thermally form smart hydrogels at body temperature (37 °C) in physiological condition. Moreover, the SCs exhibited good biocompatibility, making them suitable for biomedical applications.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Zhang S, Yu M, Zhang G, He G, Ji Y, Dong J, Zheng H, Qian L. Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies. Molecules 2023; 28:6769. [PMID: 37836611 PMCID: PMC10574145 DOI: 10.3390/molecules28196769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Guanmei He
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Yunxu Ji
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Juan Dong
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Lu HT, Lin C, Wang YJ, Hsu FY, Hsu JT, Tsai ML, Mi FL. Sequential deacetylation/self-gelling chitin hydrogels and scaffolds functionalized with fucoidan for enhanced BMP-2 loading and sustained release. Carbohydr Polym 2023; 315:121002. [PMID: 37230625 DOI: 10.1016/j.carbpol.2023.121002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive factor that promotes bone formation. A major obstacle to the clinical application of BMP-2 is its inherent instability and complications caused by its rapid release from implants. Chitin based materials have excellent biocompatibility and mechanical properties, making them ideal for bone tissue engineering applications. In this study, a simple and easy method was developed to spontaneously form deacetylated β-chitin (DAC-β-chitin) gels at room temperature through a sequential deacetylation/self-gelation process. The structural transformation of β-chitin to DAC-β-chitin leads to the formation of self-gelling DAC-β-chitin, from which hydrogels and scaffolds were prepared. Gelatin (GLT) accelerated the self-gelation of DAC-β-chitin and increased the pore size and porosity of the DAC-β-chitin scaffold. The DAC-β-chitin scaffolds were then functionalized with a BMP-2-binding sulfate polysaccharide, fucoidan (FD). Compared with β-chitin scaffolds, FD-functionalized DAC-β-chitin scaffolds showed higher BMP-2 loading capacity and more sustainable release of BMP-2, and thus had better osteogenic activity for bone regeneration.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan, ROC
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Yi-Ju Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Fang-Yu Hsu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Ju-Ting Hsu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Min-Lang Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, ROC.
| |
Collapse
|
8
|
He S, Xie F, Su W, Luo H, Chen D, Cai J, Hong X. Anti-Inflammatory Salidroside Delivery from Chitin Hydrogels for NIR-II Image-Guided Therapy of Atopic Dermatitis. J Funct Biomater 2023; 14:jfb14030150. [PMID: 36976074 PMCID: PMC10058600 DOI: 10.3390/jfb14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Atopic dermatitis (AD) is the most common heterogeneous skin disease. Currently, effective primary prevention approaches that hamper the occurrence of mild to moderate AD have not been reported. In this work, the quaternized β-chitin dextran (QCOD) hydrogel was adopted as a topical carrier system for topical and transdermal delivery of salidroside for the first time. The cumulative release value of salidroside reached ~82% after 72 h at pH 7.4, while in vitro drug release experiments proved that QCOD@Sal (QCOD@Salidroside) has a good, sustained release effect, and the effect of QCOD@Sal on atopic dermatitis mice was further investigated. QCOD@Sal could promote skin repair or AD by modulating inflammatory factors TNF-α and IL-6 without skin irritation. The present study also evaluated NIR-II image-guided therapy (NIR-II, 1000–1700 nm) of AD using QCOD@Sal. The treatment process of AD was monitored in real-time, and the extent of skin lesions and immune factors were correlated with the NIR-II fluorescence signals. These attractive results provide a new perspective for designing NIR-II probes for NIR-II imaging and image-guided therapy with QCOD@Sal.
Collapse
Affiliation(s)
- Shengnan He
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Fang Xie
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wuyue Su
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (J.C.); (X.H.)
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
- Correspondence: (J.C.); (X.H.)
| |
Collapse
|
9
|
Zhang H, Zhang X, Cao Q, Wu S, Wang XQ, Peng N, Zeng D, Liao J, Xu H. Facile fabrication of chitin/ZnO composite hydrogels for infected wound healing. Biomater Sci 2022; 10:5888-5899. [PMID: 36040455 DOI: 10.1039/d2bm00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When ordinary wounds are infected, the skin's self-healing capacity declines; thus appropriate dressings with both antibacterial ability and healing ability for bacteria-associated wounds are indispensable. In this work, multifunctional chitin/ZnO composite hydrogels have been designed as an infected full-thickness skin wound-healing material. The hydrogels are fabricated by a facile one-pot strategy through the sequential addition of commercial ZnO powders into aqueous alkaline chitin solutions, crosslinking and regeneration. The regenerated nanoscale ZnO particles aggregate into microscale particles and are embedded in the chitin matrix with tight interactions, including hydrogen bonding and coordination interactions. The decoration of ZnO endows the chitin/ZnO composite hydrogels with excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with acceptable biocompatibility. More importantly, the chitin/ZnO composite hydrogels show an outstanding accelerated infectious full-thickness wound-healing performance with more fibroblast proliferation, more collagen deposition, and more neogenesis of the epithelium and granulation tissue. Therefore, it is expected that the chitin/ZnO composite hydrogels can serve as competitive skin wound dressings for the prevention and control of infections.
Collapse
Affiliation(s)
- Hongli Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qi Cao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Xiao-Qiang Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Danlin Zeng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
10
|
KOH/thiourea aqueous solution: A potential solvent for studying the dissolution mechanism and chain conformation of corn starch. Int J Biol Macromol 2022; 195:86-92. [PMID: 34890635 DOI: 10.1016/j.ijbiomac.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
Non-derivatizing, high-efficiency and low-toxicity solvents are important for studying the dissolution behavior and potential applications of starch. In this study, we investigated the starch dissolution mechanism and molecular conformation in KOH/thiourea aqueous solutions and compared these with KOH/urea and KOH aqueous solutions. Solubility analysis revealed that the KOH/thiourea solution demonstrates a better ability to dissolve corn starch than KOH/urea and KOH solutions. Rheological behavior and dynamic and static light scattering indicated that starch is stable in KOH/thiourea solution and exists as a regular star structure. Fourier transform infrared spectroscopy, 13C NMR, and molecular dynamics simulations indicated that hydrated K+ and OH- destroy the strong starch hydrogen bond interactions; thiourea hydrate self-assembles into a shell surrounding the starch-KOH complex through interaction with KOH, whereas there is no direct strong interaction between urea and KOH. Therefore, adding thiourea to a KOH solution can promote dissolution and prevent self-aggregation of the starch chain.
Collapse
|
11
|
Kang Y, Liu Z, Long Y, Wang B, Yang X, Sha D, Shi K, Ji X, Li B, Liu Y. Synthesis and structural characterization of
N
,
N
,
N
‐trimethyl chitosan. J Appl Polym Sci 2021. [DOI: 10.1002/app.51811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yu Kang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Zhi Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Yingyun Long
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Baolong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Xu Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Di Sha
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Kai Shi
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Bai Li
- Department of Colorectal and Anal Surgery The First Hospital of Jilin University Changchun China
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| |
Collapse
|
12
|
Enhancing the solubility of α-chitin in NaOH/urea aqueous solution by synergistic pretreatment of mechanical activation and metal salt. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Huang J, Zhong Y, Zhang X, Xu H, Zhu C, Cai J. Continuous Pilot-Scale Wet-Spinning of Biocompatible Chitin/Chitosan Multifilaments from an Aqueous KOH/Urea Solution. Macromol Rapid Commun 2021; 42:e2100252. [PMID: 34142401 DOI: 10.1002/marc.202100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Indexed: 11/09/2022]
Abstract
Chitin is a promising natural polymer with great potential as a biomedical, hygiene, absorbent, and food-packing material. Producing chitin multifilament and assembling them into textiles is an efficient way of preparing these materials, with wet-spinning a major method used to produce man-made fibers. Unfortunately, dissolving chitin, producing a stable and suitable chitin dope, and ensuring filament strength are the main obstacles to the production of chitin multifilament. Based on recent research into chitin dissolution, solution properties, and high-strength chitin-based materials, chitin multifilament wet-spinning is no longer only a hypothetical strategy. Here, a pilot-scale wet-spinning method is introduced that overcomes the abovementioned limitations. A stable chitin spinning dope is prepared by dissolution and aging in an aqueous KOH/urea solution. A chitin multifilament is prepared by wet-spinning using a pilot-scale wet-spinning apparatus and aqueous alcohol/salt coagulation. After deacetylation, the chitosan multifilament possesses a dense structure and low crystallinity, but excellent mechanical properties. The chitin/chitosan multifilaments exhibit excellent cytocompatibilities and have promising prospects in biomedical applications. The method developed in this work provides a new approach for the pilot-scale wet-spinning of chitin/chitosan multifilaments.
Collapse
Affiliation(s)
- Junchao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yi Zhong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xi Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Huan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jie Cai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.,Research Institute of Shenzhen, Wuhan University, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
14
|
Novel CaCO 3/chitin aerogel: Synthesis and adsorption performance toward Congo red in aqueous solutions. Int J Biol Macromol 2021; 181:786-792. [PMID: 33766599 DOI: 10.1016/j.ijbiomac.2021.03.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
In this study, chitin aerogel doped with nano-calcium carbonate (CaCO3/chitin aerogel) was prepared by dissolving chitin in Na2CO3/Ca (OH)2/urea system followed by epichlorohydrin (ECH) addition as a cross-linker and then freeze-drying of the hydrogel. The as-obtained CaCO3/chitin aerogel showed good adsorption properties toward the adsorption of Congo Red (CR) with maximum adsorption capacity reaching approximately 266.4 mg·g-1. Besides, the adsorption capacity was affected by the initial concentration and pH. The adsorption kinetics revealed a second-order kinetics model of CaCO3/chitin aerogel toward CR, and the adsorption process was controlled by both the liquid film diffusion and intra-particle diffusion. In sum, chitin aerogel looks promising as an effective adsorbent for anion dye adsorption. The cost-effective and eco-friendly developed approaches are also of great interest for future environmental remediation.
Collapse
|
15
|
Yang K, Zhou Y, Wang Z, Li M, Shi D, Wang X, Jiang T, Zhang Q, Ding B, You J. Pseudosolvent Intercalator of Chitin: Self-Exfoliating into Sub-1 nm Thick Nanofibrils for Multifunctional Chitinous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007596. [PMID: 33538009 DOI: 10.1002/adma.202007596] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Traditionally, energy-intensive and time-consuming postmechanical disintegration processes are inevitable in extracting biopolymer nanofibrils from natural materials and thereby hinder their practical applications. Herein, a new, convenient, scalable, and energy-efficient method for exfoliating nanofibrils (ChNFs) from various chitin sources via pseudosolvent-assisted intercalation process is proposed. These self-exfoliated ChNFs possess controllable thickness from 2.2 to 0.8 nm, average diameter of 4-5 nm, high aspect ratio up to 103 and customized surface chemistries. Particularly, compared with elementary nanofibrils, ChNFs with few molecular layers thick exhibit greater potential to construct high-performance structural materials, e.g., ductile nanopapers with large elongation up to 70.1% and toughness as high as 30.2 MJ m-3 , as well as soft hydrogels with typical nonlinear elasticity mimicking that of human-skin. The proposed self-exfoliation concept with unique advantages in the combination of high yield, energy efficiency, scalable productivity, less equipment requirements, and mild conditions opens up a door to extract biopolymer nanofibrils on an industrial scale. Moreover, the present modular ChNFs exfoliation will facilitate researchers to study the effect of thickness on the properties of nanofibrils and provide more insight into the structure-function relationship of biopolymer-based materials.
Collapse
Affiliation(s)
- Kaihua Yang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Youshuang Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Zengbing Wang
- CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Mingjie Li
- CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Dean Shi
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Tao Jiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Qunchao Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Beibei Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jun You
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| |
Collapse
|
16
|
Abstract
Desoxyribosenucleic acid, DNA, and cellulose molecules self-assemble in aqueous systems. This aggregation is the basis of the important functions of these biological macromolecules. Both DNA and cellulose have significant polar and nonpolar parts and there is a delicate balance between hydrophilic and hydrophobic interactions. The hydrophilic interactions related to net charges have been thoroughly studied and are well understood. On the other hand, the detailed roles of hydrogen bonding and hydrophobic interactions have remained controversial. It is found that the contributions of hydrophobic interactions in driving important processes, like the double-helix formation of DNA and the aqueous dissolution of cellulose, are dominating whereas the net contribution from hydrogen bonding is small. In reviewing the roles of different interactions for DNA and cellulose it is useful to compare with the self-assembly features of surfactants, the simplest case of amphiphilic molecules. Pertinent information on the amphiphilic character of cellulose and DNA can be obtained from the association with surfactants, as well as on modifying the hydrophobic interactions by additives.
Collapse
|
17
|
Xu H, Zhang L, Zhang H, Luo J, Gao X. Green Fabrication of Chitin/Chitosan Composite Hydrogels and Their Potential Applications. Macromol Biosci 2021; 21:e2000389. [PMID: 33458940 DOI: 10.1002/mabi.202000389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/27/2020] [Indexed: 12/20/2022]
Abstract
Chitin is the second most abundant natural polysaccharide with biocompatibility and bioactivity. Aqueous KOH/urea solution is reported for rapid dissolution of chitin, therefore providing a greener and more efficient avenue to fabricate chitin-based functional materials. Chitosan is the most important derivative of chitin with the acetylation degree lower than 60%. Herein, novel chitin/chitosan composite hydrogels are fabricated from the green and highly efficient KOH/urea aqueous system for the first time. Both chitin and chitosan are dissolved in aqueous KOH/urea solutions, then cross-linked by epichlorohydrin to form bulk chitin/chitosan composite hydrogels (CCGEL). The structural, thermal, mechanical, and swelling properties of CCGEL are thoroughly studied. The cell studies show that NIH-3T3 cells self-assemble to form regular 3D multicellular spheroids on the CCGEL samples with high viability. L929 cells proliferate and intend to form cell aggregates, and the size of the cell aggregates becomes greater with the increase of chitosan loading. Additionally, the CCGEL samples exhibit antibacterial activities. Thus, this pioneering work has provided crucial information for novel chitin/chitosan composite materials constructed via the direct dissolution of chitin and chitosan in aqueous KOH/urea solutions, and presented their potential applications in the cell culture and antibacterial fields.
Collapse
Affiliation(s)
- Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei ProvinceSchool of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Li Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei ProvinceSchool of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hongli Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei ProvinceSchool of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jie Luo
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei ProvinceSchool of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaofang Gao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei ProvinceSchool of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
18
|
Huang J, Frauenlob M, Shibata Y, Wang L, Nakajima T, Nonoyama T, Tsuda M, Tanaka S, Kurokawa T, Gong JP. Chitin-Based Double-Network Hydrogel as Potential Superficial Soft-Tissue-Repairing Materials. Biomacromolecules 2020; 21:4220-4230. [PMID: 32936628 DOI: 10.1021/acs.biomac.0c01003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitin is a biopolymer, which has been proven to be a biomedical material candidate, yet the weak mechanical properties seriously limit their potentials. In this work, a chitin-based double-network (DN) hydrogel has been designed as a potential superficial repairing material. The hydrogel was synthesized through a double-network (DN) strategy composing hybrid regenerated chitin nanofiber (RCN)-poly (ethylene glycol diglycidyl ether) (PEGDE) as the first network and polyacrylamide (PAAm) as the second network. The hybrid RCN-PEGDE/PAAm DN hydrogel was strong and tough, possessing Young's modulus (elasticity) E 0.097 ± 0.020 MPa, fracture stress σf 0.449 ± 0.025 MPa, and work of fracture Wf 5.75 ± 0.35 MJ·m-3. The obtained DN hydrogel was strong enough for surgical requirements in the usage of soft tissue scaffolds. In addition, chitin endowed the DN hydrogel with good bacterial resistance and accelerated fibroblast proliferation, which increased the NIH3T3 cell number by nearly five times within 3 days. Subcutaneous implantation studies showed that the DN hydrogel did not induce inflammation after 4 weeks, suggesting a good biosafety in vivo. These results indicated that the hybrid RCN-PEGDE/PAAm DN hydrogel had great prospect as a rapid soft-tissue-repairing material.
Collapse
Affiliation(s)
- Junchao Huang
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Martin Frauenlob
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Shibata
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Tasuku Nakajima
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Nonoyama
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Kurokawa
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|