1
|
Ochonma C, Francis VS, Biswas SK, Gavvalapalli N. Advancements in π-conjugated polymers: harnessing cycloalkyl straps for high-performance π-conjugated materials. Chem Commun (Camb) 2024; 60:13653-13666. [PMID: 39492725 DOI: 10.1039/d4cc03799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Pendant alkyl chains are widely used to successfully obtain a wide variety of soluble linear 1D π-conjugated polymers. Over the past several decades, a wide variety of π-conjugated polymers have been synthesized to realize the desired properties and improve the performance of organic electronic devices. However, this strategy is not suitable for generating soluble 2D-π-conjugated materials, including ladder polymers, nanoribbons, and 2D-π-conjugated polymers, due to strong van der Waals interactions between the ribbons and sheets. The drive to synthesize higher dimensional polymers and to enhance polymers' properties has spurred the exploration of a novel direction in materials chemistry-the synthesis of unconventional monomers and polymers. The Gavvalapalli research group has developed and used cycloalkyl straps containing aryl building blocks for the synthesis of conjugated polymers. These cycloalkyl straps, positioned either above or below the π-conjugation plane, have been shown to directly control the π-π interactions between the polymer chains. We have demonstrated that π-face masking cycloalkyl straps hinder interchain π-π interactions. The first part of this review article highlights the use of cycloalkyl straps for the synthesis of higher dimensional π-conjugated polymers. In this section, we discuss the synthesis of 2D-H-mers, dispersible hyperbranched π-conjugated polymers, and conjugated porous polymers without the pendant solubilizing chains. The second part of the feature article highlights how the cycloalkyl straps can be used to gain control over polymer-acceptor interactions, including the interaction strength and the location of the acceptor along the polymer backbone. We conclude the article with the future outlook on cycloalkyl strap-containing building blocks in the world of conjugated polymers.
Collapse
Affiliation(s)
- Charles Ochonma
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Victor S Francis
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Sayan Kumar Biswas
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Nagarjuna Gavvalapalli
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| |
Collapse
|
2
|
Jiang QC, Iwai T, Jo M, Hosomi T, Yanagida T, Uchida K, Hashimoto K, Nakazono T, Yamada Y, Kobayashi A, Takizawa SY, Masai H, Terao J. Insulated π-Conjugated Azido Scaffolds for Stepwise Functionalization via Huisgen Cycloaddition on Metal Oxide Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403717. [PMID: 39046075 DOI: 10.1002/smll.202403717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.
Collapse
Affiliation(s)
- Qi-Chun Jiang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Morihiro Jo
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
3
|
Zhu H, Chen L, Sun B, Wang M, Li H, Stoddart JF, Huang F. Applications of macrocycle-based solid-state host-guest chemistry. Nat Rev Chem 2023; 7:768-782. [PMID: 37783822 DOI: 10.1038/s41570-023-00531-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Macrocyclic molecules have been used in various fields owing to their guest binding properties. Macrocycle-based host-guest chemistry in solution can allow for precise control of complex formation. Although solution-phase host-guest complexes are easily prepared, their limited stability and processability prevent widespread application. Extending host-guest chemistry from solution to the solid state results in complexes that are generally more robust, enabling easier processing and broadened applications. Macrocyclic compounds in the solid state can encapsulate guests with larger affinities than their soluble counterparts. This is crucial for use in applications such as separation science and devices. In this Review, we summarize recent progress in macrocycle-based solid-state host-guest chemistry and discuss the basic physical chemistry of these complexes. Representative macrocycles and their solid-state complexes are explored, as well as potential applications. Finally, perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Bin Sun
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Hao Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| |
Collapse
|
4
|
El Haitami A, Resmerita AM, Ursu LE, Asandulesa M, Cantin S, Farcas A. Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air-Water Interface. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4757. [PMID: 37445070 DOI: 10.3390/ma16134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Two poly(3,4-ethylenedioxythiophene) polyrotaxanes (PEDOT∙TMe-βCD and PEDOT∙TMe-γCD) end-capped by pyrene (Py) were synthesized by oxidative polymerization of EDOT encapsulated into TMe-βCD or TMe-γCD cavities with iron (III) chloride (FeCl3) in water and chemically characterized. The effect of TMe-βCD or TMe-γCD encapsulation of PEDOT backbones on the molecular weight, thermal stability, and solubility were investigated in depth. UV-vis absorption, fluorescence (FL), phosphorescence (PH), quantum efficiencies, and lifetimes in water and acetonitrile were also explored, together with their surface morphology and electrical properties. Furthermore, dynamic light scattering was used to study the hydrodynamic diameter (DH) and z-potential (ZP-ζ) of the water soluble fractions of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD. PEDOT∙TMe-βCD and PEDOT∙TMe-γCD exhibited a sharp monodisperse peak with a DH of 55 ± 15 nm and 122 ± 32 nm, respectively. The ZP-ζ value decreased from -31.23 mV for PEDOT∙TMe-βCD to -20.38 mV for PEDOT∙TMe-γCD, indicating that a negatively charged layer covers their surfaces. Surface pressure-area isotherms and Brewster angle microscopy (BAM) studies revealed the capability of the investigated compounds to organize into sizeable and homogeneous 2D supramolecular assemblies at the air-water interface. The control of the 2D monolayer organization through the thermodynamic parameters of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD suggests potential for a wide range of optoelectronic applications.
Collapse
Affiliation(s)
- Alae El Haitami
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Ana-Maria Resmerita
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Laura Elena Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Mihai Asandulesa
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Sophie Cantin
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Aurica Farcas
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
5
|
Hameed F, Mohanan M, Ibrahim N, Ochonma C, Rodríguez-López J, Gavvalapalli N. Controlling π-Conjugated Polymer-Acceptor Interactions by Designing Polymers with a Mixture of π-Face Strapped and Nonstrapped Monomers. Macromolecules 2023; 56:3421-3429. [PMID: 38510570 PMCID: PMC10950295 DOI: 10.1021/acs.macromol.3c00175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 03/22/2024]
Abstract
Controlling π-conjugated polymer-acceptor complex interaction, including the interaction strength and location along the polymer backbone, is central to organic electronics and energy applications. Straps in the strapped π-conjugated polymers mask the π-face of the polymer backbone and hence are useful to control the interactions of the π-face of the polymer backbone with other polymer chains and small molecules compared to the conventional pendant solubilizing chains. Herein, we have synthesized a series of strapped π-conjugated copolymers containing a mixture of strapped and nonstrapped comonomers to control the polymer-acceptor interactions. Simulations confirmed that the acceptor is directed toward the nonstrapped repeat unit. More importantly, strapped copolymers overcome a major drawback of homopolymers and display higher photoinduced photoluminescence (PL) quenching, which is a measure of electron transfer from the polymer to acceptor, compared to that of both the strapped homopolymer and the conventional polymer with pendant solubilizing chains. We have also shown that this strategy applies not only to strapped polymers, but also to the conventional polymers with pendant solubilizing chains. The increase in PL quenching is attributed to the absence of a steric sheath around the comonomers and their random location along the polymer backbone, which enhances the probability of non-neighbor acceptor binding events along the polymer backbone. Thus, by mixing insulated and noninsulated monomers along the polymer backbone, the location of the acceptor along the polymer backbone, polymer-acceptor interaction strength, and the efficiency of photoinduced charge transfer are controllable compared to the homopolymers.
Collapse
Affiliation(s)
- Fatima Hameed
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Manikandan Mohanan
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Nafisa Ibrahim
- Department
of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles Ochonma
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nagarjuna Gavvalapalli
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
6
|
Pecorario S, Royakkers J, Scaccabarozzi AD, Pallini F, Beverina L, Bronstein H, Caironi M. Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8324-8335. [PMID: 36186667 PMCID: PMC9520976 DOI: 10.1021/acs.chemmater.2c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobility organic semiconductors in n-type field-effect transistors and non-fullerene acceptors in organic photovoltaic blends. The encapsulating macrocycles shield the bithiophene units while leaving the naphthalene diimide units available for intermolecular interactions. With respect to PNDIT2, the encapsulated counterpart displays an increased backbone planarity. Molecular encapsulation prevents preaggregation of the polymer chains in common organic solvents, while it permits π-stacking in the solid state and promotes thin film crystallinity through an intermolecular-lock mechanism. Consequently, n-type semiconducting behavior is retained in field-effect transistors, although charge mobility is lower than in PNDIT2 due to the absence of the fibrillar microstructure that originates from preaggregation in solution. Hence, molecularly encapsulating conjugated polymers represent a promising chemical strategy to tune the molecular interaction in solution and the backbone conformation and to consequently control the nanomorphology of casted films without altering the electronic structure of the core polymer.
Collapse
Affiliation(s)
- Stefano Pecorario
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, Milan 20133, Italy
- Department
of Energy, Micro and Nanostructured Materials Laboratory—NanoLab, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Jeroen Royakkers
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Alberto D. Scaccabarozzi
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, Milan 20133, Italy
| | - Francesca Pallini
- Department
of Materials Science, Università
di Milano-Bicocca, via Cozzi 55, 20125 Milan, Italy
| | - Luca Beverina
- Department
of Materials Science, Università
di Milano-Bicocca, via Cozzi 55, 20125 Milan, Italy
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Mario Caironi
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, Milan 20133, Italy
| |
Collapse
|
7
|
Patrick CW, Woods JF, Gawel P, Otteson CE, Thompson AL, Claridge TDW, Jasti R, Anderson HL. Polyyne [3]Rotaxanes: Synthesis via Dicobalt Carbonyl Complexes and Enhanced Stability. Angew Chem Int Ed Engl 2022; 61:e202116897. [PMID: 34995402 PMCID: PMC9302669 DOI: 10.1002/anie.202116897] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/08/2023]
Abstract
New strategies for synthesizing polyyne polyrotaxanes are being developed as an approach to stable carbyne “insulated molecular wires”. Here we report an active metal template route to polyyne [3]rotaxanes, using dicobalt carbonyl masked alkyne equivalents. We synthesized two [3]rotaxanes, both with the same C28 polyyne dumbbell component, one with a phenanthroline‐based macrocycle and one using a 2,6‐pyridyl cycloparaphenylene nanohoop. The thermal stabilities of the two rotaxanes were compared with that of the naked polyyne dumbbell in decalin at 80 °C, and the nanohoop rotaxane was found to be 4.5 times more stable.
Collapse
Affiliation(s)
- Connor W Patrick
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Joseph F Woods
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Przemyslaw Gawel
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Claire E Otteson
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Amber L Thompson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| |
Collapse
|
8
|
Thickness Dependence of Electronic Structure and Optical Properties of F8BT Thin Films. Polymers (Basel) 2022; 14:polym14030641. [PMID: 35160630 PMCID: PMC8838540 DOI: 10.3390/polym14030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Electronic devices based on polymer thin films have experienced a tremendous increase in their efficiency in the last two decades. One of the critical factors that affects the efficiency of polymer solar cells or light emitting devices is the presence of structural defects that controls non-radiative recombination. The purpose of this report is to demonstrate a non-trivial thickness dependence of optoelectronic properties and structure (dis)order in thin conductive poly(9,9-dioctyfluorene-alt-benzothiadiazole), F8BT, polymer films. The UV-Vis absorption spectra exhibited blue shift and peak broadening; significant changes in 0–0 and 0–1 radiative transition intensity was found in photoluminescence emission spectra. The density of state (DOS) was directly mapped by energy resolved-electrochemical impedance spectroscopy (ER-EIS). Satellite states 0.5 eV below the lowest unoccupied molecular orbital (LUMO) band were revealed for the thinner polymer films. Moreover, the decreasing of the deep states density in the band gap manifested an increment in the material structural ordering with increasing thickness. Changes in the ratio between crystalline phases with face-on and edge-on orientation of F8BT chains were identified in the films by grazing-incidence wide angle X-ray scattering technique. A thickness threshold in all investigated aspects of the films at a thickness of about 100 nm was observed that can be attributed to the development of J-H aggregation in the film structure and mutual interplay between these two modes. Although a specific structure–property relationship thickness threshold value may be expected for thin films prepared from various polymers, solvents and under different process conditions, the value of about 100 nm can be generally considered as the characteristic length scale of this phenomenon.
Collapse
|
9
|
Patrick CW, Woods JF, Gawel P, Otteson CE, Thompson AL, Claridge TDW, Jasti R, Anderson HL. Polyyne [3]rotaxanes: Synthesis via dicobalt carbonyl complexes and enhanced stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Harry Laurence Anderson
- University of Oxford Department of Chemistry 12 Mansfield RoadChemistry Research Laboratory OX1 3TA Oxford UNITED KINGDOM
| |
Collapse
|
10
|
Sartucci JL, Maity A, Mohanan M, Bertke J, Kertesz M, Gavvalapalli N. Molecular tetrominoes: selective masking of the donor π-face to control the configuration of donor-acceptor complexes. Org Biomol Chem 2022; 20:375-386. [PMID: 34904145 DOI: 10.1039/d1ob02293h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the doping mechanism in organic semiconductors and generating molecular design rules to control the doping process are crucial for improving the performance of organic electronics. Even though controlling the location and orientation of the dopant along the semiconductor backbone is an important step in the doping mechanism, studies in this direction are scarce as it is a challenging task. To address this, herein, we incorporated π-face masked (strapped) units in 1,4-bis(phenylethynylene)benzene (donor) to control the acceptor (dopant) location along the trimer, donor-acceptor binding strength, and acceptor ionization. Two strapped trimers, PCP and CPC, are synthesized with control over the location of the strapped repeat unit in the trimer. The trimers are complexed with the 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) acceptor in solution. DFT calculations show that DDQ residing on the non-strapped repeat unit (the percentage of this configuration is at least ca. 73%) has the highest binding energy for both PCP and CPC. The percentage of dopant ionization is higher in the case of strapped trimers (PCP and CPC) compared to that of linear control trimers (PLP and LPL) and the completely non-strapped (PPP) trimer. The percentage of dopant ionization increased by 15 and 59% in the case of PCP and CPC respectively compared to that of PPP.
Collapse
Affiliation(s)
- Jenna L Sartucci
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Arindam Maity
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Manikandan Mohanan
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Jeffery Bertke
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA.
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Nagarjuna Gavvalapalli
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| |
Collapse
|
11
|
Masai H, Oka Y, Terao J. Precision synthesis of linear oligorotaxanes and polyrotaxanes achieving well-defined positions and numbers of cyclic components on the axle. Chem Commun (Camb) 2021; 58:1644-1660. [PMID: 34927653 DOI: 10.1039/d1cc03507j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interest in macromolecules has increased because of their functional properties, which can be tuned using precise organic synthetic methods. For example, desired functions have been imparted by controlling the nanoscale structures of such macromolecules. In particular, compounds with interlocked structures, including rotaxanes, have attracted attention because of their unique supramolecular structures. In such supramolecular structures, the mobility and freedom of the macrocycles are restricted by an axle and dependent on those of other macrocycles, which imparts unique functions to these threaded structures. Recently, methods for the ultrafine engineering and synthesis, as well as functions, of "defined" rotaxane structures that are not statistically dispersed on the axle (i.e., control over the number and position of cyclic molecules) have been reported. Various synthetic strategies allow access to such well-defined linear oligo- and polyrotaxanes, including [1]rotaxanes and [n]rotaxanes (mostly n > 3). These state-of-the-art synthetic methods have resulted in unique functions of these oligo-and polyrotaxane materials. Herein, we review the effective synthetic protocols and functions of precisely constructed one-dimensional oligomers and polymers bearing defined threaded structures, and discuss the latest reports and trends.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| |
Collapse
|
12
|
Kageyama H, Asaka K, Kishida H, Koyama T. Hole Doping in Polythiophenes Encapsulated in Semiconducting and Metallic Single-Walled Carbon Nanotubes: Impact of the Electronic Structure. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroto Kageyama
- Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Koji Asaka
- Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Hideo Kishida
- Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Takeshi Koyama
- Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
13
|
Royakkers J, Guo K, Toolan DTW, Feng L, Minotto A, Congrave DG, Danowska M, Zeng W, Bond AD, Al‐Hashimi M, Marks TJ, Facchetti A, Cacialli F, Bronstein H. Molecular Encapsulation of Naphthalene Diimide (NDI) Based π-Conjugated Polymers: A Tool for Understanding Photoluminescence. Angew Chem Int Ed Engl 2021; 60:25005-25012. [PMID: 34519412 PMCID: PMC9297952 DOI: 10.1002/anie.202110139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Indexed: 11/09/2022]
Abstract
Conjugated polymers are an important class of chromophores for optoelectronic devices. Understanding and controlling their excited state properties, in particular, radiative and non-radiative recombination processes are among the greatest challenges that must be overcome. We report the synthesis and characterization of a molecularly encapsulated naphthalene diimide-based polymer, one of the most successfully used motifs, and explore its structural and optical properties. The molecular encapsulation enables a detailed understanding of the effect of interpolymer interactions. We reveal that the non-encapsulated analogue P(NDI-2OD-T) undergoes aggregation enhanced emission; an effect that is suppressed upon encapsulation due to an increasing π-interchain stacking distance. This suggests that decreasing π-stacking distances may be an attractive method to enhance the radiative properties of conjugated polymers in contrast to the current paradigm where it is viewed as a source of optical quenching.
Collapse
Affiliation(s)
- Jeroen Royakkers
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Kunping Guo
- Department of Physics and Astronomy and LCNUniversity College LondonGower StreetLondonWC1E 6BTUK
| | | | - Liang‐Wen Feng
- Department of ChemistryNorthwestern University2145 Sheridan roadEvanstonIL60208-3113USA
| | - Alessandro Minotto
- Department of Physics and Astronomy and LCNUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Daniel G. Congrave
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Magda Danowska
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Weixuan Zeng
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Andrew D. Bond
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Tobin J. Marks
- Department of ChemistryNorthwestern University2145 Sheridan roadEvanstonIL60208-3113USA
| | - Antonio Facchetti
- Department of ChemistryNorthwestern University2145 Sheridan roadEvanstonIL60208-3113USA
| | - Franco Cacialli
- Department of Physics and Astronomy and LCNUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Hugo Bronstein
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| |
Collapse
|
14
|
Royakkers J, Guo K, Toolan DTW, Feng L, Minotto A, Congrave DG, Danowska M, Zeng W, Bond AD, Al‐Hashimi M, Marks TJ, Facchetti A, Cacialli F, Bronstein H. Molecular Encapsulation of Naphthalene Diimide (NDI) Based π‐Conjugated Polymers: A Tool for Understanding Photoluminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jeroen Royakkers
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Kunping Guo
- Department of Physics and Astronomy and LCN University College London Gower Street London WC1E 6BT UK
| | - Daniel T. W. Toolan
- Department of Chemistry University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Liang‐Wen Feng
- Department of Chemistry Northwestern University 2145 Sheridan road Evanston IL 60208-3113 USA
| | - Alessandro Minotto
- Department of Physics and Astronomy and LCN University College London Gower Street London WC1E 6BT UK
| | - Daniel G. Congrave
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Magda Danowska
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Weixuan Zeng
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew D. Bond
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Mohammed Al‐Hashimi
- Department of Chemistry Texas A&M University at Qatar P.O. Box 23874 Doha Qatar
| | - Tobin J. Marks
- Department of Chemistry Northwestern University 2145 Sheridan road Evanston IL 60208-3113 USA
| | - Antonio Facchetti
- Department of Chemistry Northwestern University 2145 Sheridan road Evanston IL 60208-3113 USA
| | - Franco Cacialli
- Department of Physics and Astronomy and LCN University College London Gower Street London WC1E 6BT UK
| | - Hugo Bronstein
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK
| |
Collapse
|
15
|
El Haitami A, Resmerita AM, Fichet O, Cantin S, Aubert PH, Farcas A. Synthesis, Photophysics, and Langmuir Films of Polyfluorene/Permodified Cyclodextrin Polyrotaxanes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11406-11413. [PMID: 34528811 DOI: 10.1021/acs.langmuir.1c02014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, we investigated the effect of permodified 2,3,6-tri-O-trimethylsilyl β- and γ-cyclodextrin (TMS·β-CD, TMS·γ-CD) encapsulation on the optical, electrochemical, morphological, and supramolecular arrangements of a poly[2,7'-(9,9-dioctylfluorene-alt-2',7-fluorene)] PF copolymer. For this purpose, the photophysical properties and Langmuir monolayer formation of PF·TMS·β-CD and PF·TMS·γ-CD polyrotaxanes were investigated and compared with those of the reference PF. Surface pressure-area isotherms and Brewster angle microscopy studies indicated the capability of both polyrotaxanes to organize into larger and homogeneous 2D supramolecular assemblies at the air-water interface. The obtained results suggest that the presence of the surrounding TMS·β-CD and TMS·γ-CD macrocycles on the PF backbones leads to changes in the conformation and hydrophobicity of the film surfaces. Our investigation offers a method to assess the impact of TMS-CD encapsulation on the control of 2D monolayer formation, with particular attention on the generation of stable PF monolayers for organic electronic devices.
Collapse
Affiliation(s)
| | | | | | | | | | - Aurica Farcas
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
16
|
Tu Y, Inagaki Y, Kwon E, Setaka W. Template Synthesis for Disilamacrocycles via Ring-closing Metathesis. CHEM LETT 2021. [DOI: 10.1246/cl.210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuyang Tu
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yusuke Inagaki
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Wataru Setaka
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
17
|
Lillis R, Thomas MR, Mohanan M, Gavvalapalli N. Enhancing Insulated Conjugated Polymer Fluorescence Quenching by Incorporating Dithia[3.3]paracyclophanes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan Lillis
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| | - Maximillian R. Thomas
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| | - Manikandan Mohanan
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| | - Nagarjuna Gavvalapalli
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| |
Collapse
|
18
|
Congrave DG, Drummond BH, Gray V, Bond AD, Rao A, Friend RH, Bronstein H. Suppressing aggregation induced quenching in anthracene based conjugated polymers. Polym Chem 2021. [DOI: 10.1039/d1py00118c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate an anthracene based conjugated polymer with a solid state PLQY that is effectively unchanged compared to solution measurements, alongside an identical PL 0–0 transition wavelength in solution and thin film.
Collapse
Affiliation(s)
| | | | - Victor Gray
- Cavendish Laboratory
- University of Cambridge
- Cambridge
- UK
- Department of Chemistry – Ångström Laboratory
| | - Andrew D. Bond
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Akshay Rao
- Cavendish Laboratory
- University of Cambridge
- Cambridge
- UK
| | | | - Hugo Bronstein
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
- Cavendish Laboratory
| |
Collapse
|