1
|
Yiming B, Hubert S, Cartier A, Bresson B, Mello G, Ringuede A, Creton C. Elastic, strong and tough ionically conductive elastomers. Nat Commun 2025; 16:431. [PMID: 39762246 PMCID: PMC11704283 DOI: 10.1038/s41467-024-55472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a lowT g polymer. The ICEs with the MNE architecture exhibit a room temperature ionic conductivity of the order of10 - 6 S . cm - 1 and stress at break of ~8 MPa, whereas the simple networks without an MNE architecture show two orders magnitude lower ionic conductivity (10 - 8 S . cm - 1 ) and comparably low strength (<1.5 MPa) at 25 °C than their MNE architecture based counterparts. The MNE architecture with a lowT g monomer combines the stiffness and fracture toughness given by sacrificial bond breakage while improving ionic conductivity through increased segmental mobility.
Collapse
Affiliation(s)
- Burebi Yiming
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Simon Hubert
- Chimie Paris Tech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, France
| | - Alex Cartier
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Gabriel Mello
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Armelle Ringuede
- Chimie Paris Tech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, France
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.
| |
Collapse
|
2
|
Bamford JT, Jones SD, Schauser NS, Pedretti BJ, Gordon LW, Lynd NA, Clément RJ, Segalman RA. Improved Mechanical Strength without Sacrificing Li-Ion Transport in Polymer Electrolytes. ACS Macro Lett 2024; 13:638-643. [PMID: 38709178 DOI: 10.1021/acsmacrolett.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Next-generation batteries demand solid polymer electrolytes (SPEs) with rapid ion transport and robust mechanical properties. However, many SPEs with liquid-like Li+ transport mechanisms suffer a fundamental trade-off between conductivity and strength. Dynamic polymer networks can improve bulk mechanics with minimal impact to segmental relaxation or ionic conductivity. This study demonstrates a system where a single polymer-bound ligand simultaneously dissociates Li+ and forms long-lived Ni2+ networks. The polymer comprises an ethylene oxide backbone and imidazole (Im) ligands, blended with Li+ and Ni2+ salts. Ni2+-Im dynamic cross-links result in the formation of a rubbery plateau resulting in, consequently, storage modulus improvement by a factor of 133× with the introduction of Ni2+ at rNi = 0.08, from 0.014 to 1.907 MPa. Even with Ni2+ loading, the high Li+ conductivity of 3.7 × 10-6 S/cm is retained at 90 °C. This work demonstrates that decoupling of ion transport and bulk mechanics can be readily achieved by the addition of multivalent metal cations to polymers with chelating ligands.
Collapse
Affiliation(s)
- James T Bamford
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Seamus D Jones
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Engineering Department, California Polytechnic State University, San Luis Obispo, California 93106, United States
| | - Nicole S Schauser
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Benjamin J Pedretti
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - Leo W Gordon
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raphaële J Clément
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Shannon DP, Moon JD, Barney CW, Sinha NJ, Yang KC, Jones SD, Garcia RV, Helgeson ME, Segalman RA, Valentine MT, Hawker CJ. Modular Synthesis and Patterning of High-Stiffness Networks by Postpolymerization Functionalization with Iron–Catechol Complexes. Macromolecules 2023; 56:2268-2276. [PMID: 37013083 PMCID: PMC10064740 DOI: 10.1021/acs.macromol.2c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Bioinspired iron-catechol cross-links have shown remarkable success in increasing the mechanical properties of polymer networks, in part due to clustering of Fe3+-catechol domains which act as secondary network reinforcing sites. We report a versatile synthetic procedure to prepare modular PEG-acrylate networks with independently tunable covalent bis(acrylate) and supramolecular Fe3+-catechol cross-linking. Initial control of network structure is achieved through radical polymerization and cross-linking, followed by postpolymerization incorporation of catechol units via quantitative active ester chemistry and subsequent complexation with iron salts. By tuning the ratio of each building block, dual cross-linked networks reinforced by clustered iron-catechol domains are prepared and exhibit a wide range of properties (Young's moduli up to ∼245 MPa), well beyond the values achieved through purely covalent cross-linking. This stepwise approach to mixed covalent and metal-ligand cross-linked networks also permits local patterning of PEG-based films through masking techniques forming distinct hard, soft, and gradient regions.
Collapse
Affiliation(s)
- Declan P. Shannon
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106-5050, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Joshua D. Moon
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106-5050, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Christopher W. Barney
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5070, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Nairiti J. Sinha
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Kai-Chieh Yang
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Seamus D. Jones
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Ronnie V. Garcia
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Rachel A. Segalman
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106-5050, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5070, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Craig J. Hawker
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106-5050, United States
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106-5121, United States
| |
Collapse
|
4
|
Jones S, Bamford J, Fredrickson GH, Segalman RA. Decoupling Ion Transport and Matrix Dynamics to Make High Performance Solid Polymer Electrolytes. ACS POLYMERS AU 2022; 2:430-448. [PMID: 36561285 PMCID: PMC9761859 DOI: 10.1021/acspolymersau.2c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/25/2022]
Abstract
Transport of ions through solid polymeric electrolytes (SPEs) involves a complicated interplay of ion solvation, ion-ion interactions, ion-polymer interactions, and free volume. Nonetheless, prevailing viewpoints on the subject promote a significantly simplified picture, likening ion transport in a polymer to that in an unstructured fluid at low solute concentrations. Although this idealized liquid transport model has been successful in guiding the design of homogeneous electrolytes, structured electrolytes provide a promising alternate route to achieve high ionic conductivity and selectivity. In this perspective, we begin by describing the physical origins of the idealized liquid transport mechanism and then proceed to examine known cases of decoupling between the matrix dynamics and ionic transport in SPEs. Specifically we discuss conditions for "decoupled" mobility that include a highly polar electrolyte environment, a percolated path of free volume elements (either through structured or unstructured channels), high ion concentrations, and labile ion-electrolyte interactions. Finally, we proceed to reflect on the potential of these mechanisms to promote multivalent ion conductivity and the need for research into the interfacial properties of solid polymer electrolytes as well as their performance at elevated potentials.
Collapse
Affiliation(s)
- Seamus
D. Jones
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States
| | - James Bamford
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,
| |
Collapse
|
5
|
He G, Wang P, Gao N, Yin X, Sun F, Li W, Zhao H, Wang C, Li G. Pyrrole-Containing ABA Triblock Brush Polymers as Dual Functional Molecules to Facilely Access Diverse Mesostructured Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guokang He
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Peng Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, P. R. China
| | - Ning Gao
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xianpeng Yin
- Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, P. R. China
| | - Fuwei Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wenyun Li
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | | | - Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Guangtao Li
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Chen H, Tong K. The Contributions of Supramolecular Kinetics to Dynamics of Supramolecular Polymers. Chempluschem 2022; 87:e202200279. [PMID: 36229412 DOI: 10.1002/cplu.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/18/2022] [Indexed: 11/08/2022]
Abstract
Supramolecular polymers exhibit well-controlled dynamics with fascinating capacity for remodeling, self-healing, and stimuli-responsiveness. Supramolecular kinetics of non-covalent bonds is a dominant control handle among the relevant factors to tailor dynamics of supramolecular polymers. This Review focuses on elucidating how supramolecular kinetics dictates the polymer dynamics in supramolecular polymer systems. The ways to tailor supramolecular kinetics are firstly examined as prerequisites for structure-activity study of supramolecular polymers. We next discuss the role of supramolecular kinetics in supramolecular polymers under different polymer architectures by the combination of both of theoretical and experimental studies. Finally, we conclude by discussing the existing challenges and opportunities in the current studies.
Collapse
Affiliation(s)
- Hao Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Kun Tong
- Beijing Institute of Aerospace Testing Technology, Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing, 100074, P. R. China
| |
Collapse
|
7
|
Liu J, Yang L, Pickett PD, Park B, Schaefer JL. Li + Transport in Single-Ion Conducting Side-Chain Polymer Electrolytes with Nanoscale Self-Assembly of Ordered Ionic Domains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiacheng Liu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lingyu Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Phillip D. Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer L. Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Andersson R, Hernández G, Mindemark J. Quantifying the ion coordination strength in polymer electrolytes. Phys Chem Chem Phys 2022; 24:16343-16352. [PMID: 35762165 DOI: 10.1039/d2cp01904c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the progress of implementing solid polymer electrolytes (SPEs) into batteries, fundamental understanding of the processes occurring within and in the vicinity of the SPE are required. An important but so far relatively unexplored parameter influencing the ion transport properties is the ion coordination strength. Our understanding of the coordination chemistry and its role for the ion transport is partly hampered by the scarcity of suitable methods to measure this phenomenon. Herein, two qualitative methods and one quantitative method to assess the ion coordination strength are presented, contrasted and discussed for TFSI-based salts of Li+, Na+ and Mg2+ in polyethylene oxide (PEO), poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC). For the qualitative methods, the coordination strength is probed by studying the equilibrium between cation coordination to polymer ligands or solvent molecules, whereas the quantitative method studies the ion dissociation equilibrium of salts in solvent-free polymers. All methods are in agreement that regardless of cation, the strongest coordination strength is observed for PEO, while PTMC exhibits the weakest coordination strength. Considering the cations, the weakest coordination is observed for Mg2+ in all polymers, indicative of the strong ion-ion interactions in Mg(TFSI)2, whilst the coordination strength for Li+ and Na+ seems to be more influenced by the interplay between the cation charge/radius and the polymer structure. The trends observed are in excellent agreement with previously observed transference numbers, confirming the importance and its connection to the ion transport in SPEs.
Collapse
Affiliation(s)
- Rassmus Andersson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.
| | - Guiomar Hernández
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.
| | - Jonas Mindemark
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.
| |
Collapse
|
9
|
Xie S, Nikolaev A, Nordness OA, C. Llanes L, Jones SD, Richardson PM, Wang H, Clément RJ, Read de Alaniz J, Segalman RA. Polymer Electrolyte Based on Cyano-Functionalized Polysiloxane with Enhanced Salt Dissolution and High Ionic Conductivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuyi Xie
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Andrei Nikolaev
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Oscar A. Nordness
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Luana C. Llanes
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Seamus D. Jones
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Peter M. Richardson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
| | - Raphaële J. Clément
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Nikolaev A, Richardson PM, Xie S, Canzian Llanes L, Jones SD, Nordness O, Wang H, Bazan GC, Segalman RA, Clément RJ, Read de Alaniz J. Role of Electron-Deficient Imidazoles in Ion Transport and Conductivity in Solid-State Polymer Electrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrei Nikolaev
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Peter M. Richardson
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Shuyi Xie
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Luana Canzian Llanes
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Seamus D. Jones
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Oscar Nordness
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Guillermo C. Bazan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Raphaële J. Clément
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Affiliation(s)
- Michael Patrick Blatt
- Florida A&M University-Florida State University (FAMU-FSU) College of Engineering, Tallahassee, Florida 32310, United States
| | - Daniel T. Hallinan
- Florida A&M University-Florida State University (FAMU-FSU) College of Engineering, Tallahassee, Florida 32310, United States
| |
Collapse
|
12
|
Abstract
We present a general theory of ionic conductivity in polymeric materials consisting of percolated ionic pathways. Identifying two key length scales corresponding to inter-path permeation distance ξ and one-dimensional hopping conduction path length mλ, we have derived closed-form formulas in terms of the energy U required to unbind a conductive ion from its bound state and the partition ratio ξ/mλ between the three-dimensional permeation and one-dimensional hopping pathways. The results provide design strategies to significantly enhance ionic conductivity in single-ion conductors. For large barriers to dissociate an ion, corrections to the Arrhenius law are presented. The predicted dependence of ionic conductivity on the unbinding time is in agreement with results in the literature based on simulations and experiments. This theory is generally applicable to conductive systems where the two mechanisms of permeation and hopping occur concurrently.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
13
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|