1
|
Gao J, Sato H. Study on the Brill transition of polyamide 6 with different crystal forms using low- and high-frequency Raman spectroscopy. RSC Adv 2025; 15:2224-2230. [PMID: 39850083 PMCID: PMC11755107 DOI: 10.1039/d4ra08523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
Polyamide 6 (PA6) in its α and γ-forms was studied from 30 to 220 °C using Raman spectroscopy in the low- and high-wavenumber regions. Quantum chemical calculations were employed to assist with band assignments. In the low-wavenumber region, a peak at approximately 100 cm-1, attributable to a mixed mode of methylene lateral motion and amide group stretching, was observed. Additionally, a new band at approximately 60 cm-1 was observed and assigned to molecular chain torsions in the α-form. Both bands indicated that molecular chain rotation occurs prior to the Brill transition at approximately 130 °C. In the high-wavenumber region, bands at approximately 1126 cm-1 and 1060 cm-1 indicated a simultaneous weakening of C-C stretching modes in the trans conformation at the same temperature, consistent with observations in the low-wavenumber region.
Collapse
Affiliation(s)
- Jiacheng Gao
- Graduate School of Human Development and Environment, Kobe University 3-11, Tsurukabuto, Nada-ku Kobe Hyogo 657-0011 Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University 3-11, Tsurukabuto, Nada-ku Kobe Hyogo 657-0011 Japan
| |
Collapse
|
2
|
Gan D, Liu Y, Hu T, Fan S, Cui L, Liao G, Xie Z, Zhu X, Yang K. Pseudo-Eutectic of Isodimorphism to Design Biaxially-Oriented Bio-Based PA56/512 with High Strength, Toughness and Barrier Performances. Polymers (Basel) 2024; 16:1176. [PMID: 38675095 PMCID: PMC11053481 DOI: 10.3390/polym16081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The biaxially-oriented PA56/512 has excellent mechanical strength, extensibility and water-oxygen barrier properties and has broad application prospects in green packaging, lithium battery diaphragm and medical equipment materials. The correlation between the aggregation structure evolution and macroscopic comprehensive properties of copolymer PA56/512 under biaxial stretching has been demonstrated in this work. The structure of the random copolymerization sequence was characterized by 13C Nuclear magnetic resonance (NMR). The typical isodimorphism behavior of the co-crystallization system of PA56/512 and its BOPA-56/512 films was revealed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) tests. And the aggregation structure, including the hydrogen bond arrangement, crystal structure and crystal morphology of PA56/512 before and after biaxial stretching, was investigated by XRD, Fourier-transform infrared spectroscopy (FTIR) and polarized optical microscopy (POM) tests. Furthermore, the effect of the biaxially-oriented stretching process on the mechanical properties of PA56/512 has been demonstrated. In addition, a deep insight into the influence of the structure on the crystallization process and physical-mechanical performance has been presented. The lowest melting point at a 512 content of 60 mol% is regarded as a "eutectic" point of the isodimorphism system. Due to the high disorder of the structural units in the polymer chain, the transition degree of the folded chain (gauche conformation) is relatively lowest when it is straightened to form an extended chain (trans conformation) during biaxially-oriented stretching, and part of the folded chain can be retained. This explains why biaxially stretched PA56/512 has high strength, outstanding toughness and excellent barrier properties at the pseudo-eutectic point. In this study, using the unique multi-scale aggregation structure characteristics of a heterohomodymite polyamide at the pseudo-eutectic point, combined with the new material design scheme and the idea of biaxial-stretching processing, a new idea for customized design of high-performance multifunctional polyamide synthetic materials is provided.
Collapse
Affiliation(s)
- Diansong Gan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
- Zhuzhou Times Engineering Plastics Industrial Co., Ltd., Zhuzhou 412008, China;
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Tianhui Hu
- Zhuzhou Times Engineering Plastics Industrial Co., Ltd., Zhuzhou 412008, China;
| | - Shuhong Fan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Lingna Cui
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Guangkai Liao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Zhenyan Xie
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Xiaoyu Zhu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Kejian Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Ding M, Ni L, Xia J, Zheng Y, Yu C, Shan G, Bao Y, Pan P. Linearly-Changed Thermal Behavior and Depressed Brill Transition in Long-Chain Polyamides Substituted by Methyl Side Groups. ACS Macro Lett 2024; 13:354-360. [PMID: 38451171 DOI: 10.1021/acsmacrolett.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Side substitution is an effective way of functionalizing and modifying the properties of polyamides. Meanwhile, side substitution would significantly influence the crystallization kinetics and polymorphic phase transition of polyamides, which, however, has not been well elucidated. Herein, we synthesized the side-substituted long-chain polyamides with various content of methyl pendent groups and investigated their crystallization and phase transition behaviors. We find that the thermal parameters of side-substituted polyamides vary linearly with the side group content, analogous to the isomorphic crystallization of random copolymers. All the solution-crystallized polyamides experience the α-γ Brill transition during heating, with the Brill transition temperature linearly decreasing as the side group content increases. Intriguingly, the γ-α transition of polyamides during cooling is suppressed with the presence of side methyl groups due to the difficulty in H-bond reorganization and gauche-trans conformational changes. This work has demonstrated the critical role of side substitution in the polymorphic crystallization and phase transition of long-chain polyamides.
Collapse
Affiliation(s)
- Mengru Ding
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lingling Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianfei Xia
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
4
|
Liao Y, Pérez-Camargo RA, Sardon H, Martínez de Ilarduya A, Hu W, Liu G, Wang D, Müller AJ. Challenging Isodimorphism Concepts: Formation of Three Crystalline Phases in Poly(hexamethylene- ran-octamethylene carbonate) Copolymers. Macromolecules 2023; 56:8199-8213. [PMID: 37900097 PMCID: PMC10601535 DOI: 10.1021/acs.macromol.3c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/01/2023] [Indexed: 10/31/2023]
Abstract
In this work, poly(hexamethylene-ran-octamethylene carbonate) copolycarbonates were synthesized by melt polycondensation in a wide range of compositions. The copolymers displayed some of the characteristic isodimorphic thermal behavior, such as crystallization for all the compositions and a pseudoeutectic behavior of the melting temperature (Tm) versus composition. The pseudoeutectic point was located at 33 mol % poly(octamethylene carbonate) (POC) content (i.e., corresponding to the PH67O33C copolymer). Surprisingly, the crystallinities (Xc) for a wide range of copolymer compositions were higher than those of the parent components, a phenomenon that has not been observed before in isodimorphic random copolymers. The structural characterization, performed by wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering experiments, revealed unexpected results depending on composition. On the one hand, the poly(hexamethylene carbonate) (PHC)- and POC-rich copolymers crystallize in PHC- and POC-type crystals, as expected. Moreover, upon cooling and heating, in situ WAXS experiments evidenced that these materials undergo reversible solid-solid transitions [δ-α (PHC) and δ-α-β (POC)] present in the parent components but at lower temperatures. On the other hand, a novel behavior was found for copolymers with 33-73 mol % POC (including the pseudoeutectic point), which are those with higher crystallinities than the parent components. For these copolymers, a new crystalline phase that is different from that of both homopolymers was observed. The in situ WAXS results for these copolymers confirmed that this novel phase is stable upon cooling and heating and does not show any crystallographic feature of the parent components or their solid-solid transitions. FTIR experiments confirmed this behavior, revealing that the new phase adopts a polyethylene-like chain conformation that differs from the trans-dominant ones exhibited by the parent components. This finding challenges the established concepts of isodimorphism and questions whether a combination of crystallization modes (isodimorphism and isomorphism) is possible in the same family of random copolymers just by changing the composition.
Collapse
Affiliation(s)
- Yilong Liao
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Ricardo A. Pérez-Camargo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Antxon Martínez de Ilarduya
- Department
of Chemical Engineering, Polytechnic University
of Catalonia ETSEIB-UPC, Diagonal 647, Barcelona 08028, Spain
| | - Wenxian Hu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dujin Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
5
|
Wang Y, Shao J, Zhu P, Wang L, Wang D, Dong X. Brill Transition in Polyamide 1012 Multiblock Poly(tetramethylene oxide) Copolymers: The Effect of Composition on Hydrogen-Bonding Organization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianming Shao
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Zhu
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dujin Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Dong
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ma GQ, Sun ZB, Ren JY, Zeng Y, Jia DZ, Li Y, Guan B, Zhong GJ, Li ZM. Reorganization of Hydrogen Bonding in Biobased Polyamide 5,13 under the Thermo-Mechanical Field: Hierarchical Microstructure Evolution and Achieving Excellent Mechanical Performance. Biomacromolecules 2022; 23:3990-4003. [PMID: 35960547 DOI: 10.1021/acs.biomac.2c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hierarchical microstructure evolution of an emerging biobased odd-odd polyamide 5,13 (PA5,13) films under the thermo-mechanical field, stepping from hydrogen bond (H-bond) arrangement to the crystalline morphology, has been investigated systematically. It is found that the reorganization of H-bonds under the thermo-mechanical field plays a crucial role in the crystallization of PA5,13. Especially, it is revealed that the crystallization process under the thermo-mechanical field develops along the chain axis direction, while lamellar fragmentation occurs perpendicular to the chain axis. Consequently, a stable and well-organized H-bond arrangement and lengthened lamellae with significant orientation have been constructed. Laudably, an impressive tensile strength of about 500 MPa and modulus of about 4.7 GPa are thus achieved. The present study could provide important guidance for the industrial-scale manufacture of high-performance biobased odd-odd PAs with long polymethylene segment in the dicarboxylic unit combined with a large difference between the polymethylene segments in the dicarboxylic and diamine units.
Collapse
Affiliation(s)
- Guo-Qi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhao-Bo Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jia-Yi Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ying Zeng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - De-Zhuang Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Bing Guan
- Cathay Biotech Inc., Shanghai 201203, People's Republic of China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
7
|
Xia J, Xu S, Zheng Y, Zhou J, Yu C, Shan G, Bao Y, Pan P. Isodimorphic Crystallization and Tunable γ–α Phase Transition in Aliphatic Copolyamides: Critical Roles of Comonomer Defects and Conformational Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianfei Xia
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shanshan Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Jian Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
8
|
Wang Z, Liu Z, Gao Z, Li X, Eling B, Pöselt E, Schander E, Wang Z. Structure transition of aliphatic m,6-Polyurethane during heating investigated using in-situ WAXS, SAXS, and FTIR. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Gardeniers M, Mani M, de Boer E, Hermida-Merino D, Graf R, Rastogi S, Harings JAW. Hydration, Refinement, and Dissolution of the Crystalline Phase in Polyamide 6 Polymorphs for Ultimate Thermomechanical Properties. Macromolecules 2022; 55:5080-5093. [PMID: 35784656 PMCID: PMC9245196 DOI: 10.1021/acs.macromol.2c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Indexed: 11/29/2022]
Abstract
![]()
Timescales of polyamide
6 melt-shaping technologies, relative to
the dynamics of conformational rearrangements upon crystallization,
challenge the formation of the most thermodynamically favorable chain
packing and thus optimum performance. In this publication, we make
use of the mediation of hydrogen bonding by water molecules in the
superheated state of water, i.e., above 100 °C in a closed environment,
in the structural refinement of polyamide 6 for enhanced thermomechanical
performance. The paper addresses dissolution and (re)crystallization
of different polyamide 6 polymorphs in the superheated state of water
by time-resolved simultaneous small- and wide-angle X-ray scattering
and solid-state 1H NMR spectroscopy and the effect on mechanical
properties. The experiments reveal that upon heating in the superheated
state of water, the pseudo-hexagonal phase dissolves at relatively
low temperature and instantly crystallizes in a defected monoclinic
phase that successively refines to a perfected monoclinic structure.
The dissolution temperature of the pseudo-hexagonal phase of polyamide
6 is found to be dependent on the degree of crystal perfection originating
from conformational disorder and misalignment of hydrogen bonding
in the lattice, retrospectively, to the Brill transition temperature.
The perfected monoclinic phase below the dissolution temperature can
be preserved upon cooling but is plasticized by hydration of the amide
moieties in the crystalline phase. The removal of water from the hydrated
crystals, in the proximity of Brill transition temperature, strengthening
the hydrogen bonding, occurs. Retrospectively, the most thermodynamically
stable crystallographic phase is preserved and renders an increase
in mechanical properties and dimensional stability of the product.
The insight obtained on the influence of superheated water on the
structural refinement of imperfected crystallographic states assists
in polyamide 6 postprocessing strategies for enhanced performance.
Collapse
Affiliation(s)
- Milo Gardeniers
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mohanraj Mani
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ele de Boer
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Daniel Hermida-Merino
- European Synchrotron Radiation Facility (ESRF), DUBBLE-CRG, FR-38043 Grenoble Cedex, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sanjay Rastogi
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Jules A. W. Harings
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Candau N, Chenal JM, Lame O, Schouwink P, Michaud V, Plummer CJ, Frauenrath H. Enhanced ductility in high performance polyamides due to strain-induced phase transitions. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Pérez-Camargo RA, Liu G, Meabe L, Zhao Y, Sardon H, Müller AJ, Wang D. Using Successive Self-Nucleation and Annealing to Detect the Solid–Solid Transitions in Poly(hexamethylene carbonate) and Poly(octamethylene carbonate). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo Arpad Pérez-Camargo
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leire Meabe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Ying Zhao
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
- IKESBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Pérez-Camargo RA, Liu G, Meabe L, Zhao Y, Sardon H, Wang D, Müller AJ. Solid–Solid Crystal Transitions (δ to α) in Poly(hexamethylene carbonate) and Poly(octamethylene carbonate). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo A. Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leire Meabe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
- IKESBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009 Spain
| |
Collapse
|
13
|
Wang Y, Zhu P, Qian C, Zhao Y, Wang L, Wang D, Dong X. The Brill Transition in Long-Chain Aliphatic Polyamide 1012: The Role of Hydrogen-Bonding Organization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Zhu
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengao Qian
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dujin Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Dong
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Puiggalí J. Aliphatic polyamides (nylons): Interplay between hydrogen bonds and crystalline structures, polymorphic transitions and crystallization. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jordi Puiggalí
- Departament d'Enginyeria Química Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est‐EEBE Barcelona
- Barcelona Research Center in Multiscale Science and Engineering Universitat Politècnica de Catalunya, c/ Eduard Maristany, 10‐14, Ed. I2 Barcelona
| |
Collapse
|
15
|
Transient Confinement of the Quaternary Tetramethylammonium Tetrafluoroborate Salt in Nylon 6,6 Fibres: Structural Developments for High Performance Properties. MATERIALS 2021; 14:ma14112938. [PMID: 34072481 PMCID: PMC8198042 DOI: 10.3390/ma14112938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
A temporary confinement of the quaternary tetramethylammonium tetrafluoroborate (TMA BF4) salt among polyamide molecules has been used for the preparation of aliphatic polyamide nylon 6,6 fibres with high-modulus and high-strength properties. In this method, the suppression or the weakening of the hydrogen bonds between the nylon 6,6 segments has been applied during the conventional low-speed melt spinning process. Thereafter, after the complete hot-drawing stage, the quaternary ammonium salt is fully extracted from the drawn 3 wt.% salt-confined fibres and the nascent fibres are, subsequently, thermally stabilized. The structural developments that are acquired in the confined-nylon 6,6 fibres are ascribed to the developments of the overall fibres' properties due to the confinement process. Surprisingly, unlike the neat nylon 6,6 fibres, the X-ray diffraction (XRD) patterns of the as-spun salt-confined fibres have shown diminishing of the (110)/(010) diffraction plane that obtained pseudohexagonal-like β' structural phase. Moreover, the β' pseudohexagonal-like to α triclinic phase transitions took-place due to the hot-drawing stage (draw-induced phase transitions). Interestingly, the hot-drawing of the as-spun salt-confined nylon 6,6 fibres achieved the same maximum draw ratio of 5.5 at all of the drawing temperatures of 120, 140 and 160 °C. The developments that happened produced the improved values of 43.32 cN/dtex for the tensile-modulus and 6.99 cN/dtex for the tensile-strength of the reverted fibres. The influences of the TMA BF4 salt on the structural developments of the crystal orientations, on the morphological structures and on the improvements of the tensile properties of the nylon 6,6 fibres have been intensively studied.
Collapse
|
16
|
Lotz B. Original Crystal Structures of Even–Even Polyamides Made of Pleated and Rippled Sheets. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bernard Lotz
- Institut Charles Sadron, CNRS and Université de Strasbourg, 23, Rue du Lœss, Strasbourg 67034, France
| |
Collapse
|