1
|
Hayashi M, Suzuki M, Kito T. Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network. ACS Macro Lett 2025:182-187. [PMID: 39869918 DOI: 10.1021/acsmacrolett.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (Tv), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state. Various methods, including viscosity-temperature plots and temperature-ramp creep (or dilatometry), have been proposed for determining the Tv. In this study, we complementarily employ X-ray scattering-based structural analysis and rheological analysis to assign Tv in phase-separated vitrimer-like materials undergoing trans-N-alkylation bond exchange. Note that the trans-N-alkylation progresses via the dissociative bond exchange pathway, whereas our previous studies demonstrated that the temperature-dependence of relaxation time followed the Arrhenius dependence, which was the reason for the classification as a vitrimer-like material. Specifically, we identify Tv as the temperature at which an anomalous increase in domain distance occurs during the rubbery state in the structural analysis. In the rheological analysis, Tv corresponds to the transition temperature marking the shift from the Williams-Landel-Ferry dependence to the Arrhenius dependence in the shift factors used to create master curves for frequency sweep rheology data. Importantly, both methods yield nearly the same Tv, validating the accuracy of the proposed assignment and, thus, providing valuable insights into the specific properties of vitrimers.
Collapse
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Maho Suzuki
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan
| | - Takumi Kito
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan
| |
Collapse
|
2
|
Karmakar R, Venkatareddy N, Himanshu, Valsecchi M, Maiti PK, Sastry S, Kumar SK, Patra TK. Computer simulations of entropic cohesion in reversibly crosslinked polymers. SOFT MATTER 2025; 21:348-355. [PMID: 39718008 DOI: 10.1039/d4sm01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Reversibly crosslinked polymer networks - polymer networks that can undergo bond association and dissociation reactions - rearrange their structures while maintaining their overall integrity, thus resulting in unique properties such as self-healing, reprocessability, shape memory and adaptability. Here, we show that the introduction of crosslinks, whether reversible or permanent, directly impacts the equilibrium polymer density and hence the material's surface tension. For a limiting case where the bonds are the same size as the polymer chain bonds, simulations, Flory hypotheses and thermodynamic calculations show that the crosslinks induce an increased entropic cohesion in the liquid. These findings implicate density as a key variable in polymers with (dynamic) crosslinkers, one that can be used to facilely tune their properties.
Collapse
Affiliation(s)
- Rahul Karmakar
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India.
- Center for Atomistic Modeling and Materials Design, Indian Institute of Technology Madras, Chennai, TN 600036, India
| | - Nayana Venkatareddy
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangaluru, KA-560012, India
| | - Himanshu
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India.
| | - Michele Valsecchi
- Department of Chemical Engineering, Columbia University, New York, USA.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangaluru, KA-560012, India
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, KA-560064, India.
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, USA.
| | - Tarak K Patra
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India.
- Center for Atomistic Modeling and Materials Design, Indian Institute of Technology Madras, Chennai, TN 600036, India
| |
Collapse
|
3
|
Yuan Q, Chen J, Shi C, Shi X, Sun C, Jiang B. Advances in Self-Healing Perovskite Solar Cells Enabled by Dynamic Polymer Bonds. Macromol Rapid Commun 2025; 46:e2400630. [PMID: 39535398 DOI: 10.1002/marc.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
This comprehensive review addresses the self-healing phenomenon in perovskite solar cells (PSCs), emphasizing the reversible reactions of dynamic bonds as the pivotal mechanism. The crucial role of polymers in both enhancing the inherent properties of perovskite and inducing self-healing phenomena in grain boundaries of perovskite films are exhibited. The review initiates with an exploration of the various stability problems that PSCs encounter, underscoring the imperative to develop PSCs with extended lifespans capable of self-heal following damage from moisture and mechanical stress. Owing to the strong compatibility brought by polymer characteristics, many additive strategies can be employed in self-healing PSCs through artful molecular design. These strategies aim to limit ion migration, prevent moisture ingress, alleviate mechanical stress, and enhance charge carrier transport. By scrutinizing the conditions, efficiency, and types of self-healing behavior, the review encapsulates the principles of dynamic bonds in the polymers of self-healing PSCs. The meticulously designed polymers not only improve the lifespan of PSCs through the action of dynamic bonds but also enhance their environmental stability through functional groups. In addition, an outlook on self-healing PSCs is provided, offering strategic guidance for future research directions in this specialized area.
Collapse
Affiliation(s)
- Qisong Yuan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Juxiang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengyu Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiangrong Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chenyu Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Pandya H, Khabaz F. Effect of dynamic bond concentration on the mechanical properties of vitrimers. Chem Commun (Camb) 2024; 60:10354-10357. [PMID: 39221558 DOI: 10.1039/d4cc03030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The presence of dynamic covalent bonds allows vitrimers to undergo topology alterations and display self-healing properties. Herein, we study the influence of varying the concentration of dynamic bonds on the macroscopic properties of hybrid vitrimer networks by subjecting them to triaxial stretching tests using molecular simulations. Results show that the presence of dynamic bonds allows for continuous stress relaxation in the hybrid networks leading to delayed craze development and higher stretching as compared to permanently crosslinked networks. The work highlights the ability of glassy vitrimer networks to relax tensile stress during deformation successfully.
Collapse
Affiliation(s)
- Harsh Pandya
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
5
|
Song Z, Dong G, Vernerey FJ, Cai S. Temperature- and Rate-Dependent Fracture in Disulfide Vitrimers. ACS Macro Lett 2024; 13:994-999. [PMID: 39052484 DOI: 10.1021/acsmacrolett.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The fracture behaviors of disulfide vitrimers are highly rate-dependent. Our investigation revealed that the temperature-dependent fracture behaviors of disulfide vitrimers cannot be entirely explained by a simple time-temperature superposition model. This Letter explores the impact of the dynamic nature of molecular defects on the temperature- and rate-dependent fracture behaviors of disulfide vitrimers. Considering that the high cross-linking density remains constant during the associated bond exchange reaction, we identify loop defects in the network as the primary dynamic defects. By employing small amplitude oscillatory shear, we measured the loop defect fraction in EPS25 disulfide vitrimers at varied temperatures, revealing an increased presence of loop defects at elevated temperatures. Furthermore, our findings indicate that the temperature-dependent fracture behaviors are attributed to the temperature-dependent number of loop defects in disulfide vitrimers.
Collapse
Affiliation(s)
- Zhaoqiang Song
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Gaoweiang Dong
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado, Boulder, Boulder, Colorado 80302, United States
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Kumar V, Kuang W, Fifield LS. Carbon Fiber-Based Vitrimer Composites: A Path toward Current Research That Is High-Performing, Useful, and Sustainable. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3265. [PMID: 38998348 PMCID: PMC11243385 DOI: 10.3390/ma17133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
In the polymeric material industry, thermosets and related composites have played a substantial role in the production of rubber and plastics. One important subset of these is thermoset composites with carbon reinforcement. The incorporation of carbon fillers and fibers gives polymeric materials improved electrical and mechanical properties, among other benefits. However, the covalently crosslinked network of thermosets presents significant challenges for recycling and reprocessing because of its intractable nature. The introduction of vitrimer materials opens a new avenue to produce biodegradable and recyclable thermosets. Carbon-reinforced vitrimer composites are pursued for high-performance, long-lasting materials with attractive physical properties, the ability to be recycled and processed, and other features that respond uniquely to stimuli. The development of carbon-reinforced vitrimer composites over the last few years is summarized in this article. First, an overview of vitrimers and the methods used to prepare carbon fiber-reinforced vitrimer composites is provided. Because of the vitrimer nature of such composites, reprocessing, healing, and recycling are viable ways to greatly extend their service life; these approaches are thoroughly explained and summarized. The conclusion is our prediction for developing carbon-based vitrimer composites.
Collapse
Affiliation(s)
| | | | - Leonard S. Fifield
- Pacific Northwest National Laboratory, Richland, WA 99354, USA; (V.K.); (W.K.)
| |
Collapse
|
7
|
Karatrantos AV, Couture O, Hesse C, Schmidt DF. Molecular Simulation of Covalent Adaptable Networks and Vitrimers: A Review. Polymers (Basel) 2024; 16:1373. [PMID: 38794566 PMCID: PMC11125108 DOI: 10.3390/polym16101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Covalent adaptable networks and vitrimers are novel polymers with dynamic reversible bond exchange reactions for crosslinks, enabling them to modulate their properties between those of thermoplastics and thermosets. They have been gathering interest as materials for their recycling and self-healing properties. In this review, we discuss different molecular simulation efforts that have been used over the last decade to investigate and understand the nanoscale and molecular behaviors of covalent adaptable networks and vitrimers. In particular, molecular dynamics, Monte Carlo, and a hybrid of molecular dynamics and Monte Carlo approaches have been used to model the dynamic bond exchange reaction, which is the main mechanism of interest since it controls both the mechanical and rheological behaviors. The molecular simulation techniques presented yield sufficient results to investigate the structure and dynamics as well as the mechanical and rheological responses of such dynamic networks. The benefits of each method have been highlighted. The use of other tools such as theoretical models and machine learning has been included. We noticed, amongst the most prominent results, that stress relaxes as the bond exchange reaction happens, and that at temperatures higher than the glass transition temperature, the self-healing properties are better since more bond BERs are observed. The lifetime of dynamic covalent crosslinks follows, at moderate to high temperatures, an Arrhenius-like temperature dependence. We note the modeling of certain properties like the melt viscosity with glass transition temperature and the topology freezing transition temperature according to a behavior ruled by either the Williams-Landel-Ferry equation or the Arrhenius equation. Discrepancies between the behavior in dissociative and associative covalent adaptable networks are discussed. We conclude by stating which material parameters and atomistic factors, at the nanoscale, have not yet been taken into account and are lacking in the current literature.
Collapse
Affiliation(s)
- Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| | - Olivier Couture
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Channya Hesse
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Daniel F. Schmidt
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| |
Collapse
|
8
|
Chen S, Scholiers V, Zhang M, Zhang J, Zhu J, Prez FED, Pan X. Thermally Responsive Selenide-containing Materials Based on Transalkylation of Selenonium Salts. Angew Chem Int Ed Engl 2023; 62:e202309652. [PMID: 37851486 DOI: 10.1002/anie.202309652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C-Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.
Collapse
Affiliation(s)
- Sisi Chen
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Vincent Scholiers
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Mengyao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Filip E Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Vozzolo G, Ximenis M, Mantione D, Fernández M, Sardon H. Thermally Reversible Organocatalyst for the Accelerated Reprocessing of Dynamic Networks with Creep Resistance. ACS Macro Lett 2023; 12:1536-1542. [PMID: 37910770 PMCID: PMC10666533 DOI: 10.1021/acsmacrolett.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The industrial implementation of covalent adaptable networks hinges on the delicate task of achieving rapid bond exchange activation at specific temperatures while ensuring a sufficiently slow exchange at working temperatures to avoid irreversible deformation. In this pursuit, latent catalysts offer a potential solution, allowing for spatiotemporal control of dynamic exchange in vitrimer networks. However, the irreversible nature of their activation has led to undesired creep deformation after multiple cycles of reprocessing. In this work, we demonstrate that a tetraphenylborate tetramethyl guanidinium salt (TPB:TMG) undergoes a reversible thermal dissociation, releasing free TMG. This thermally reversible organocatalyst can be readily introduced as an additive in industrially relevant materials such as disulfide-containing polyurethane networks (PU) that undergo disulfide exchange in the presence of a base catalyst. In contrast with a free-base-catalyzed process, we demonstrate the dual benefit of adding the thermally reversible TPB:TMG in preventing creep at lower temperatures and also enabling reprocessability of disulfide-containing PU networks at elevated temperatures. The remarkable reversibility of this thermally activated catalyst allows for multiple reprocessing cycles while effectively maintaining a creep-free state at service temperature.
Collapse
Affiliation(s)
- Giulia Vozzolo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari
Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Marta Ximenis
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari
Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari
Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Mercedes Fernández
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari
Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari
Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| |
Collapse
|
10
|
Houck H, McConnell KA, Klingler CJ, Koenig AL, Himka GK, Larsen MB. Postpolymerization Modification by Nucleophilic Addition to Styrenic Carbodiimides. ACS Macro Lett 2023; 12:1112-1117. [PMID: 37485980 PMCID: PMC10433525 DOI: 10.1021/acsmacrolett.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Carbodiimides are electrophilic functional groups that react with select nucleophiles under mild conditions. However, their potential as platforms for postpolymerization modification has been relatively underexplored. We describe the synthesis and radical polymerization of a styrenic carbodiimide which undergoes rapid nucleophilic addition with primary and secondary alkyl amines under ambient conditions, even in the presence of other protic nucleophiles. The monomer is amenable to both free and controlled radical (co)polymerization, and we further demonstrate the utility of this approach by preparing covalent adaptable networks through guanylation of the styrenic carbodiimide with difunctional amines. These materials exhibit a variation in relaxation times according to both the guanidine structure and concentration, providing a facile means for tuning dynamic behavior.
Collapse
Affiliation(s)
| | | | - Conner J. Klingler
- Department of Chemistry, Western
Washington University, Bellingham, Washington 98225, United States
| | - Adelle L. Koenig
- Department of Chemistry, Western
Washington University, Bellingham, Washington 98225, United States
| | - Grace K. Himka
- Department of Chemistry, Western
Washington University, Bellingham, Washington 98225, United States
| | - Michael B. Larsen
- Department of Chemistry, Western
Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
11
|
Zhang V, Accardo JV, Kevlishvili I, Woods EF, Chapman SJ, Eckdahl CT, Stern CL, Kulik HJ, Kalow JA. Tailoring Dynamic Hydrogels by Controlling Associative Exchange Rates. Chem 2023; 9:2298-3317. [PMID: 37790656 PMCID: PMC10545375 DOI: 10.1016/j.chempr.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dithioalkylidenes are a newly-developed class of conjugate acceptors that undergo thiol exchange via an associative mechanism, enabling decoupling of key material properties for sustainability, biomedical, and sensing applications. Here, we show that the exchange rate is highly sensitive to the structure of the acceptor and tunable over four orders of magnitude in aqueous environments. Cyclic acceptors exchange rapidly, from 0.95 to 15.6 M-1s-1, while acyclic acceptors exchange between 3.77x10-3 and 2.17x10-2 M-1s-1. Computational, spectroscopic, and structural data suggest that cyclic acceptors are more reactive than their acyclic counterparts because of resonance stabilization of the tetrahedral exchange intermediate. We parametrize molecular reactivity with respect to computed descriptors of the electrophilic site and leverage this insight to design a compound with intermediate characteristics. Lastly, we incorporate this dynamic bond into hydrogels and demonstrate that the characteristic stress relaxation time (τ) is directly proportional to molecular kex.
Collapse
Affiliation(s)
- Vivian Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Joseph. V Accardo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, USA
| | - Eliot F. Woods
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Steven J. Chapman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | | | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, USA
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
- Lead contact
| |
Collapse
|
12
|
Yan T, Balzer AH, Herbert KM, Epps TH, Korley LTJ. Circularity in polymers: addressing performance and sustainability challenges using dynamic covalent chemistries. Chem Sci 2023; 14:5243-5265. [PMID: 37234906 PMCID: PMC10208058 DOI: 10.1039/d3sc00551h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The circularity of current and future polymeric materials is a major focus of fundamental and applied research, as undesirable end-of-life outcomes and waste accumulation are global problems that impact our society. The recycling or repurposing of thermoplastics and thermosets is an attractive solution to these issues, yet both options are encumbered by poor property retention upon reuse, along with heterogeneities in common waste streams that limit property optimization. Dynamic covalent chemistry, when applied to polymeric materials, enables the targeted design of reversible bonds that can be tailored to specific reprocessing conditions to help address conventional recycling challenges. In this review, we highlight the key features of several dynamic covalent chemistries that can promote closed-loop recyclability and we discuss recent synthetic progress towards incorporating these chemistries into new polymers and existing commodity plastics. Next, we outline how dynamic covalent bonds and polymer network structure influence thermomechanical properties related to application and recyclability, with a focus on predictive physical models that describe network rearrangement. Finally, we examine the potential economic and environmental impacts of dynamic covalent polymeric materials in closed-loop processing using elements derived from techno-economic analysis and life-cycle assessment, including minimum selling prices and greenhouse gas emissions. Throughout each section, we discuss interdisciplinary obstacles that hinder the widespread adoption of dynamic polymers and present opportunities and new directions toward the realization of circularity in polymeric materials.
Collapse
Affiliation(s)
- Tianwei Yan
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Alex H Balzer
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Katie M Herbert
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Thomas H Epps
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| | - LaShanda T J Korley
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| |
Collapse
|
13
|
Yao Y, He E, Xu H, Liu Y, Wei Y, Ji Y. Fabricating liquid crystal vitrimer actuators far below the normal processing temperature. MATERIALS HORIZONS 2023; 10:1795-1805. [PMID: 36857698 DOI: 10.1039/d3mh00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Liquid crystal vitrimers can be reprocessed, reshaped, welded, and healed due to exchange-reaction-enabled topology changes despite having fully covalently cross-linked network structures. Fabricating liquid crystal (LC) vitrimer actuators is invariably carried out above a characteristic temperature known as the topology freezing transition temperature (Tv). The reason that all exchange-reaction-based operations must be performed above Tv is because the exchange reaction is insignificant below Tv. Here we find that LC vitrimers can be reshaped at temperatures below the measured Tv, whereas non-LC vitrimers cannot. The work here not only makes it possible to create reprogrammable and stable LC vitrimer actuators at low temperatures but also reminds us that both our measurement and understanding of the Tv need further attention to facilitate the use of vitrimers in different areas.
Collapse
Affiliation(s)
- Yanjin Yao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
- Chung-Yuan Christian University, Chung-Li, 32023, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, China.
| |
Collapse
|
14
|
de Heer Kloots MHP, Schoustra SK, Dijksman JA, Smulders MMJ. Phase separation in supramolecular and covalent adaptable networks. SOFT MATTER 2023; 19:2857-2877. [PMID: 37060135 PMCID: PMC10131172 DOI: 10.1039/d3sm00047h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phase separation phenomena have been studied widely in the field of polymer science, and were recently also reported for dynamic polymer networks (DPNs). The mechanisms of phase separation in dynamic polymer networks are of particular interest as the reversible nature of the network can participate in the structuring of the micro- and macroscale domains. In this review, we highlight the underlying mechanisms of phase separation in dynamic polymer networks, distinguishing between supramolecular polymer networks and covalent adaptable networks (CANs). Also, we address the synergistic effects between phase separation and reversible bond exchange. We furthermore discuss the effects of phase separation on the material properties, and how this knowledge can be used to enhance and tune material properties.
Collapse
Affiliation(s)
- Martijn H P de Heer Kloots
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sybren K Schoustra
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
15
|
Cui X, Jiang N, Shao J, Zhang H, Yang Y, Tang P. Linear and Nonlinear Viscoelasticities of Dissociative and Associative Covalent Adaptable Networks: Discrepancies and Limits. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Nuofei Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Jingyu Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Yuliang Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Ping Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| |
Collapse
|
16
|
Li B, Cao PF, Saito T, Sokolov AP. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem Rev 2023; 123:701-735. [PMID: 36577085 DOI: 10.1021/acs.chemrev.2c00575] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.
Collapse
Affiliation(s)
- Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
17
|
Perego A, Khabaz F. Creep and Recovery Behavior of Vitrimers with Fast Bond Exchange Rate. Macromol Rapid Commun 2023; 44:e2200313. [PMID: 35856395 DOI: 10.1002/marc.202200313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Indexed: 01/11/2023]
Abstract
Vitrimers encompass the desirable mechanical properties of thermosets with the recyclability of thermoplastics. This ability arises from the rearrangement of the vitrimer covalent network upon heating via a bond shuffling mechanism while its cross-link density remains preserved. This unique feature makes vitrimers interesting candidates for the design of materials that combine dimensional stability at high temperatures and solvent resistance with the ability to be reshaped and processed. Despite these advantages, vitrimer exhibits significant creep at operating conditions where thermosets show little or no creep. As the mechanical properties of vitrimers not only depend on their chemical composition but also on the dynamics of the polymer chains, molecular dynamics (MD) simulations can provide detailed molecular mechanisms of the system of interest under macroscopic stress-induced deformations. In this regard, the recently developed MD/Monte Carlo simulation methodology capable of capturing the bond exchange mechanics in vitrimers is used to study the creep and recovery response of a coarse-grained model thermoset and vitrimer with a fast bond exchange rate. The time-stress superposition principle is then successfully applied to the creep response. The resulting universal curves enable us to predict the long-time creep behavior of both systems extending the timescale from 4 to over 10 orders of magnitude.
Collapse
Affiliation(s)
- Alessandro Perego
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA.,Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
18
|
Zhang V, Kang B, Accardo JV, Kalow JA. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J Am Chem Soc 2022; 144:22358-22377. [PMID: 36445040 PMCID: PMC9812368 DOI: 10.1021/jacs.2c08104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer networks built out of dynamic covalent bonds offer the potential to translate the control and tunability of chemical reactions to macroscopic physical properties. Under conditions at which these reactions occur, the topology of covalent adaptable networks (CANs) can rearrange, meaning that they can flow, self-heal, be remolded, and respond to stimuli. Materials with these properties are necessary to fields ranging from sustainability to tissue engineering; thus the conditions and time scale of network rearrangement must be compatible with the intended use. The mechanical properties of CANs are based on the thermodynamics and kinetics of their constituent bonds. Therefore, strategies are needed that connect the molecular and macroscopic worlds. In this Perspective, we analyze structure-reactivity-property relationships for several classes of CANs, illustrating both general design principles and the predictive potential of linear free energy relationships (LFERs) applied to CANs. We discuss opportunities in the field to develop quantitative structure-reactivity-property relationships and open challenges.
Collapse
Affiliation(s)
| | | | | | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
19
|
Shaukat U, Sölle B, Rossegger E, Rana S, Schlögl S. Vat Photopolymerization 3D-Printing of Dynamic Thiol-Acrylate Photopolymers Using Bio-Derived Building Blocks. Polymers (Basel) 2022; 14:5377. [PMID: 36559744 PMCID: PMC9784638 DOI: 10.3390/polym14245377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
As an energy-efficient additive manufacturing process, vat photopolymerization 3D-printing has become a convenient technology to fabricate functional devices with high resolution and freedom in design. However, due to their permanently crosslinked network structure, photopolymers are not easily reprocessed or repaired. To improve the environmental footprint of 3D-printed objects, herein, we combine the dynamic nature of hydroxyl ester links, undergoing a catalyzed transesterification at elevated temperature, with an acrylate monomer derived from renewable resources. As a sustainable building block, we synthesized an acrylated linseed oil and mixed it with selected thiol crosslinkers. By careful selection of the transesterification catalyst, we obtained dynamic thiol-acrylate resins with a high cure rate and decent storage stability, which enabled the digital light processing (DLP) 3D-printing of objects with a structure size of 550 µm. Owing to their dynamic covalent bonds, the thiol-acrylate networks were able to relax 63% of their initial stress within 22 min at 180 °C and showed enhanced toughness after thermal annealing. We exploited the thermo-activated reflow of the dynamic networks to heal and re-shape the 3D-printed objects. The dynamic thiol-acrylate photopolymers also demonstrated promising healing, shape memory, and re-shaping properties, thus offering great potential for various industrial fields such as soft robotics and electronics.
Collapse
Affiliation(s)
- Usman Shaukat
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Bernhard Sölle
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Sravendra Rana
- School of Engineering, Energy Acres, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
20
|
Boronic ester-based vitrimeric methylvinyl silicone elastomer with “solid-liquid” feature and rate-dependent mechanical performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
21
|
Lessard JJ, Stewart KA, Sumerlin BS. Controlling Dynamics of Associative Networks through Primary Chain Length. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jacob J. Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A. Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
22
|
Deng S, Xu W, Zhang J, Xu YG. Tunable mechanical properties of vulcanised styrene-butadiene rubber by regulating cross-linked molecular network structures. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2133152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shengwei Deng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, People’s Republic of China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Wentao Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Jing Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Yin-gen Xu
- Ningbo Runhe High-Tech Materials Co., Ltd., Ningbo, People’s Republic of China
| |
Collapse
|
23
|
Abstract
We describe the full rheology profile of vitrimers, from small deformation (linear) to large deformation (non-linear) viscoelastic behaviour, providing concise analytical expressions to assist the experimental data analysis, and also clarify the emerging insights and rheological concepts in the subject. We identify the elastic-plastic transition at a time scale comparable to the life-time of the exchangeable bonds in the vitrimer network, and propose a new method to deduce material parameters using the Master Curves. At large plastic creep, we describe the strain thinning when the material is subjected to a constant stress or force, and suggest another method to characterize the material parameters from the creep curves. We also investigate partial vitrimers including a permanent sub-network and an exchangeable sub-network where the bond exchange occurs. In creep, such materials can exhibit either strain thinning or strain thickening, depending on applied load, and present the phase diagram of this response. Rheology studies on vitrimers have mostly focused on their linear viscoelasticity under small deformations. Here, the authors develop a full rheological understanding of vitrimer response that spans between small deformation and large-deformation regime, and across 22 decades of effective frequency, providing clear and concise analytical expressions to assist the experimental data analysis and propose a method to deduce material parameters using Master Curves.
Collapse
|
24
|
Kölsch JC, Berač CM, Lossada F, Stach OS, Seiffert S, Walther A, Besenius P. Recyclable Vitrimers from Biogenic Poly(itaconate) Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas C. Kölsch
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christian M. Berač
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Francisco Lossada
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Oliver S. Stach
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Andreas Walther
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
25
|
Perego A, Lazarenko D, Cloitre M, Khabaz F. Microscopic Dynamics and Viscoelasticity of Vitrimers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Perego
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Daria Lazarenko
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Michel Cloitre
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL Research University, 75005 Paris, France
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
26
|
Cheng L, Zhao X, Zhao J, Liu S, Yu W. Structure and Dynamics of Associative Exchange Dynamic Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Cheng
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xinyang Zhao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jun Zhao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Sijun Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
27
|
Isogai T, Hayashi M. Critical Effects of Branch Numbers at the Cross-Link Point on the Relaxation Behaviors of Transesterification Vitrimers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Taketo Isogai
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
28
|
Dugas LD, Walker WD, Shankar R, Hoppmeyer KS, Thornell TL, Morgan SE, Storey RF, Patton DL, Simon YC. Diketoenamine-based Vitrimers via Thiol-ene photopolymerization. Macromol Rapid Commun 2022; 43:e2200249. [PMID: 35856189 DOI: 10.1002/marc.202200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, we describe a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic β-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, we devised an alkene-functionalized β-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, which was reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (∼1:0.85 primary amine:triketone). The resulting networks exhibited subambient glass transition temperature (Tg = 5.66°C) by differential scanning calorimetry (DSC). Using a Maxwell stress-relaxation fit, the topology freezing temperature (Tv ) was calculated to be -32°C. Small-amplitude oscillatory shear (SAOS) rheological analysis enabled us to identify a practical critical temperature above which the vitrimer could be successfully reprocessed (Tv,eff ). Via the introduction of excess primary amines, we could readily degrade the networks into monomeric precursors, which were in turn reacted with diamines to regenerate reprocessable networks. Photopolymerization provides unique spatiotemporal control over the network topology, thereby opening the path for further investigation of vitrimer properties. As such, this work expands the toolbox of chemical upcycling of networks and enables their wider implementation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Logan D Dugas
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - William D Walker
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Rahul Shankar
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Keely S Hoppmeyer
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Travis L Thornell
- US Army, Engineering Research & Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS, 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Robson F Storey
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Yoan C Simon
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
29
|
Porath L, Huang J, Ramlawi N, Derkaloustian M, Ewoldt RH, Evans CM. Relaxation of Vitrimers with Kinetically Distinct Mixed Dynamic Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Porath
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Junrou Huang
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Nabil Ramlawi
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Maryanne Derkaloustian
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Randy H. Ewoldt
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Interplay of Crosslinking Structures and Segmental Dynamics in Solid-Liquid Elastomers. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Yang H, Hu K, Wang D. Using Nanosphere Embedding to Probe the Surface and Bulk Relaxation in Vitrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6174-6179. [PMID: 35503978 DOI: 10.1021/acs.langmuir.2c00574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relaxation behavior of vitrimers that is dominated by chemical exchange reactions plays a critical role in vitrimer processing and applications such as self-healing, welding, and others involving the dynamic nature of the vitrimers. Here, we use atomic force microscopy to image embedding of gold nanospheres into epoxy-based vitrimers to assess the surface and bulk relaxation in this material. The results show that even at temperatures well below the bulk topology freezing transition temperature, the nanospheres embed into the vitrimers. The activation energy for the relaxation at the surface and in bulk were estimated in the single measurement, and the former is found to be much lower than the latter. The increase in the surface relaxation is attributed to a combination of an acceleration effect on relaxation by network defects and a decrease in the number of intermolecular exchanges at the surface.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaili Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
32
|
Porath L, Soman B, Jing BB, Evans CM. Vitrimers: Using Dynamic Associative Bonds to Control Viscoelasticity, Assembly, and Functionality in Polymer Networks. ACS Macro Lett 2022; 11:475-483. [PMID: 35575320 DOI: 10.1021/acsmacrolett.2c00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vitrimers have been investigated in the past decade for their promise as recyclable, reprocessable, and self-healing materials. In this Viewpoint, we focus on some of the key open questions that remain regarding how the molecular-scale chemistry impacts macroscopic physical chemistry. The ability to design temperature-dependent complex viscoelastic spectra with independent control of viscosity and modulus based on knowledge of the dynamic bond and polymer chemistry is first discussed. Next, the role of dynamic covalent chemistry on self-assembly is highlighted in the context of crystallization and nanophase separation. Finally, the ability of dynamic bond exchange to manipulate molecular transport and viscoelasticity is discussed in the context of various applications. Future directions leveraging dynamic covalent chemistry to provide insights regarding fundamental polymer physics as well as imparting functionality into polymers are discussed in all three of these highlighted areas.
Collapse
Affiliation(s)
- Laura Porath
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| | - Bhaskar Soman
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| | - Brian B. Jing
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Beckman Institute, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| |
Collapse
|
33
|
Nakamura Y, Tenjimbayashi M, Moriya A, Naito M. Impact of telechelic polymer precursors on the viscoelastic properties of vitrimers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yasuyuki Nakamura
- Data‐driven Polymer Design Group Research and Services Division of Materials Data and Integrated System (MaDIS) National Institute for Materials Science (NIMS) 1‐2‐1 Sengen Tsukuba Ibaraki 305‐0047 Japan
| | - Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Akinori Moriya
- National Institute of Technology Numazu College 3600 Ooka Numazu Shizuoka 410–8501 Japan
| | - Masanobu Naito
- Data‐driven Polymer Design Group Research and Services Division of Materials Data and Integrated System (MaDIS) National Institute for Materials Science (NIMS) 1‐2‐1 Sengen Tsukuba Ibaraki 305‐0047 Japan
| |
Collapse
|
34
|
Gosecki M, Gosecka M. Boronic Acid Esters and Anhydrates as Dynamic Cross-Links in Vitrimers. Polymers (Basel) 2022; 14:842. [PMID: 35215755 PMCID: PMC8962972 DOI: 10.3390/polym14040842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Growing environmental awareness imposes on polymer scientists the development of novel materials that show a longer lifetime and that can be easily recycled. These challenges were largely met by vitrimers, a new class of polymers that merges properties of thermoplastics and thermosets. This is achieved by the incorporation of dynamic covalent bonds into the polymer structure, which provides high stability at the service temperature, but enables the processing at elevated temperatures. Numerous types of dynamic covalent bonds have been utilized for the synthesis of vitrimers. Amongst them, boronic acid-based linkages, namely boronic acid esters and boroxines, are distinguished by their quick exchange kinetics and the possibility of easy application in various polymer systems, from commercial thermoplastics to low molecular weight thermosetting resins. This review covers the development of dynamic cross-links. This review is aimed at providing the state of the art in the utilization of boronic species for the synthesis of covalent adaptable networks. We mainly focus on the synthetic aspects of boronic linkages-based vitrimers construction. Finally, the challenges and future perspectives are provided.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | |
Collapse
|
35
|
Nakagawa S, Xia J, Yoshie N. Quantifying the effects of cooperative hydrogen bonds between vicinal diols on polymer dynamics. SOFT MATTER 2022; 18:1275-1286. [PMID: 35045145 DOI: 10.1039/d1sm01747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient cross-links such as hydrogen bonds (H-bonds) are a central concept for creating polymers with mechanical functionalities, including toughness and self-healing properties. While conventional strong H-bonding groups are based on rigid and planar molecular motifs with multidentate intermolecular interactions, we recently discovered that a structurally simple and flexible vicinal diol (VDO) could serve as a robust yet dynamic cross-link with multiple intermolecular H-bonds between hydroxy groups. In this work, we investigated the effects of cooperativity of H-bonds in VDOs on polymer dynamics. We synthesized model polybutadienes with either VDO or monool (MO) side groups by a radical-mediated thiol-ene click reaction. The oscillatory shear rheology data were analyzed by using the sticky Rouse model. The characteristic time of a single modified segment (δτ0) was significantly longer for the VDO-modified polymers than for the MO-modified polymers, even when they had the same number density of hydroxy groups. The increase in δτ0 with increasing degree of modification was much more drastic for the VDO-modified polymers than for the MO-modified polymers. Moreover, the characteristic time of an unmodified Rouse segment (τ0) was found to increase upon increasing the number of VDOs in the chain, while it was unchanged against the number of MOs. These observations highlight the cooperative effects of placing two hydroxy groups in a close vicinal arrangement. The multiplicity of H-bonds and the structural flexibility of VDOs led to efficient retardation of the chain dynamics.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan.
| | - Jun Xia
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan.
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
36
|
Affiliation(s)
- Chang Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
37
|
Amjad SN, Picu RC. Stress relaxation in network materials: the contribution of the network. SOFT MATTER 2022; 18:446-454. [PMID: 34913052 DOI: 10.1039/d1sm01546j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stress relaxation in network materials with permanent crosslinks is due to the transport of fluid within the network (poroelasticity), the viscoelasticity of the matrix and the viscoelasticity of the network. While relaxation associated with the matrix was studied extensively, the contribution of the network remains unexplored. In this work we consider two and three-dimensional stochastic fiber networks with viscoelastic fibers and explore the dependence of stress relaxation on network structure. We observe that relaxation has two regimes - an initial exponential regime, followed by a stretched exponential regime - similar to the situation in other disordered materials. The stretch exponent is a function of density, fiber diameter and the network structure, and has a minimum at the transition between the affine and non-affine regimes of network behavior. The relaxation time constant of the first, exponential regime is similar to the relaxation time constant of individual fibers and is independent of network density and fiber diameter. The relaxation time constant of the second, stretched exponential regime is a weak function of network parameters. The stretched exponential emerges from the heterogeneity of relaxation dynamics on scales comparable with the mesh size, with higher heterogeneity leading to smaller stretch exponents. In composite networks of fibers whose relaxation time constant is selected from a distribution with set mean, the stretch exponent decreases with increasing the coefficient of variation of the fiber time constant distribution. As opposed to thermal glass formers and colloids, in these athermal systems the dynamic heterogeneity is introduced by the network structure and does not evolve during relaxation. While in thermal systems the control parameter is the temperature, in this athermal case the control parameter is a non-dimensional structural parameter which describes the degree of non-affinity of the network.
Collapse
Affiliation(s)
- S N Amjad
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
38
|
Tangthana-umrung K, Poutrel QA, Gresil M. Epoxy Homopolymerization as a Tool to Tune the Thermo-Mechanical Properties and Fracture Toughness of Vitrimers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Quentin Arthur Poutrel
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Matthieu Gresil
- i-Composites Lab, Department of Material Science and Engineering, Department of Mechanical and Aerospace Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
39
|
Samanta S, Kim S, Saito T, Sokolov AP. Polymers with Dynamic Bonds: Adaptive Functional Materials for a Sustainable Future. J Phys Chem B 2021; 125:9389-9401. [PMID: 34324809 DOI: 10.1021/acs.jpcb.1c03511] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymeric materials play critical role in many current technologies. Among them, adaptive polymeric materials with dynamic (reversible) bonds exhibit unique properties and provide exciting opportunities for various future technologies. Dynamic bonds enable structural rearrangements in polymer networks in specific conditions. Replacement of a few covalent bonds by dynamic bonds can enhance polymeric properties, e.g., strongly improve the toughness and the adhesive properties of polymers. Moreover, they provide recyclability and enable new properties, such as self-healing and shape memory effects. We briefly overview new developments in the field of polymers with dynamic bonds and current understanding of their dynamic properties. We further highlight several examples of unique properties of polymers with dynamic bonds and provide our perspectives for them to be used in many current and future applications.
Collapse
Affiliation(s)
- Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sungjin Kim
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
40
|
Perego A, Khabaz F. Effect of bond exchange rate on dynamics and mechanics of vitrimers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alessandro Perego
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron Akron Ohio USA
| |
Collapse
|
41
|
Ishibashi JSA, Pierce IC, Chang AB, Zografos A, El-Zaatari BM, Fang Y, Weigand SJ, Bates FS, Kalow JA. Mechanical and Structural Consequences of Associative Dynamic Cross-Linking in Acrylic Diblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jacob S. A. Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ian C. Pierce
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alice B. Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aristotelis Zografos
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bassil M. El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Fang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J. Weigand
- Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|