1
|
Guzik A, de Maere d'Aertrycke F, Stuart MCA, Raffa P. Lowest gelation concentration in a complex-coacervate-driven self-assembly system, achieved by redox-RAFT synthesis of high molecular weight block polyelectrolytes. SOFT MATTER 2024. [PMID: 39359157 DOI: 10.1039/d4sm00763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The objective of this work was to synthesize high molecular weight polyelectrolyte complex (PEC) micelles that are effective in controlling the rheology of aqueous solutions at low concentrations, paving the way for industrial applications of thickeners based on the principle of electrostatic self-assembly. Redox-initiated RAFT (reversible addition-fragmentation chain-transfer) polymerization was used to obtain anionic block polyelectrolytes based on poly(sodium 2-acrylamido-2-methylpropane sulfonate) and poly(acrylamide)-poly(AMPS)-block-poly(AM) (di-block) and poly(AMPS)-block-poly(AM)-block-poly(AMPS) (tri-block), with molecular weights of 237 kDa and 289 kDa and polydispersities of 1.29 and 1.34, respectively. A random poly(AMPS)-co-poly(AM) copolymer was also synthesized for comparison. PEC micelles were obtained upon mixing with cationic poly(N-[3-(dimethylamino)propyl]methacrylamide hydrochloride) - poly(DMAPMA), forming viscoelastic gels at unprecedented low concentrations of <3 wt% for the di-block and <1 wt% for the tri-block, which to date is the lowest demonstrated gelation concentration for a synthetic PEC micelle system. Differences between tri-block and di-block architectures are discussed, with the former being more affected by the addition of salt, which is attributed to percolated network breakdown. The random co-polymer was shown not to be an effective thickener but displayed a surprising lack of phase separation upon coacervation. The assemblies were characterized using dynamic light scattering (DLS) and cryo transmission electron microscopy (cryoTEM), revealing spherical micelles with a diameter of approximately 200 nm for the diblock and a mixture of spherical micelles and network particles for the tri-block PEC micelles. The micelles were not affected by dilution down to a polymer concentration of 7.8 × 10-4% (approx. 0.03 μM). Responsiveness to salinity, pH, and temperature was studied using DLS, revealing a critical NaCl concentration of 1.1 M for the block copolymer micelles.
Collapse
Affiliation(s)
- Aleksander Guzik
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4 9747 AG, The Netherlands.
- DPI, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Fabrice de Maere d'Aertrycke
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4 9747 AG, The Netherlands.
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Patrizio Raffa
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4 9747 AG, The Netherlands.
| |
Collapse
|
2
|
Beyer D, Torres PB, Pineda SP, Narambuena CF, Grad JN, Košovan P, Blanco PM. pyMBE: The Python-based molecule builder for ESPResSo. J Chem Phys 2024; 161:022502. [PMID: 38995083 DOI: 10.1063/5.0216389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article.
Collapse
Affiliation(s)
- David Beyer
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Paola B Torres
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Sebastian P Pineda
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Claudio F Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Jean-Noël Grad
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Department of Physics, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Pineda S, Staňo R, Murmiliuk A, Blanco PM, Montes P, Tošner Z, Groborz O, Pánek J, Hrubý M, Štěpánek M, Košovan P. Charge Regulation Triggers Condensation of Short Oligopeptides to Polyelectrolytes. JACS AU 2024; 4:1775-1785. [PMID: 38818083 PMCID: PMC11134362 DOI: 10.1021/jacsau.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 06/01/2024]
Abstract
Electrostatic interactions between charged macromolecules are ubiquitous in biological systems, and they are important also in materials design. Attraction between oppositely charged molecules is often interpreted as if the molecules had a fixed charge, which is not affected by their interaction. Less commonly, charge regulation is invoked to interpret such interactions, i.e., a change of the charge state in response to a change of the local environment. Although some theoretical and simulation studies suggest that charge regulation plays an important role in intermolecular interactions, experimental evidence supporting such a view is very scarce. In the current study, we used a model system, composed of a long polyanion interacting with cationic oligolysines, containing up to 8 lysine residues. We showed using both simulations and experiments that while these lysines are only weakly charged in the absence of the polyanion, they charge up and condense on the polycations if the pH is close to the pKa of the lysine side chains. We show that the lysines coexist in two distinct populations within the same solution: (1) practically nonionized and free in solution; (2) highly ionized and condensed on the polyanion. Using this model system, we demonstrate under what conditions charge regulation plays a significant role in the interactions of oppositely charged macromolecules and generalize our findings beyond the specific system used here.
Collapse
Affiliation(s)
- Sebastian
P. Pineda
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Anastasiia Murmiliuk
- Jülich
Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, Garching 85748, Germany
| | - Pablo M. Blanco
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
- Department
of Material Science and Physical Chemistry, Research Institute of
Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, Barcelona 08028, Spain
- Department of Physics, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Patricia Montes
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Zdeněk Tošner
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Ondřej Groborz
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Jiří Pánek
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Miroslav Štěpánek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| |
Collapse
|
4
|
Staňo R, van Lente J, Lindhoud S, Košovan P. Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment. Macromolecules 2024; 57:1383-1398. [PMID: 38370910 PMCID: PMC10867894 DOI: 10.1021/acs.macromol.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Mixing of oppositely charged polyelectrolytes can result in phase separation into a polymer-poor supernatant and a polymer-rich polyelectrolyte complex (PEC). We present a new coarse-grained model for the Grand-reaction method that enables us to determine the composition of the coexisting phases in a broad range of pH and salt concentrations. We validate the model by comparing it to recent simulations and experimental studies, as well as our own experiments on poly(acrylic acid)/poly(allylamine hydrochloride) complexes. The simulations using our model predict that monovalent ions partition approximately equally between both phases, whereas divalent ones accumulate in the PEC phase. On a semiquantitative level, these results agree with our own experiments, as well as with other experiments and simulations in the literature. In the sequel, we use the model to study the partitioning of a weak diprotic acid at various pH values of the supernatant. Our results show that the ionization of the acid is enhanced in the PEC phase, resulting in its preferential accumulation in this phase, which monotonically increases with the pH. Currently, this effect is still waiting to be confirmed experimentally. We explore how the model parameters (particle size, charge density, permittivity, and solvent quality) affect the measured partition coefficients, showing that fine-tuning of these parameters can make the agreement with the experiments almost quantitative. Nevertheless, our results show that charge regulation in multivalent solutes can potentially be exploited in engineering the partitioning of charged molecules in PEC-based systems at various pH values.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jéré
J. van Lente
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
5
|
Gallegos A, Müller M, Wu J. Single-chain simulation of Ising density functional theory for weak polyelectrolytes. J Chem Phys 2023; 159:214902. [PMID: 38047517 DOI: 10.1063/5.0175561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Conventional theories of weak polyelectrolytes are either computationally prohibitive to account for the multidimensional inhomogeneity of polymer ionization in a liquid environment or oversimplistic in describing the coupling effects of ion-explicit electrostatic interactions and long-range intrachain correlations. To bridge this gap, we implement the Ising density functional theory (iDFT) for ionizable polymer systems using the single-chain-in-mean-field algorithm. The single-chain-in-iDFT (sc-iDFT) shows significant improvements over conventional mean-field methods in describing segment-level dissociation equilibrium, specific ion effects, and long-range intrachain correlations. With an explicit consideration of the fluctuations of polymer configurations and the position-dependent ionization of individual polymer segments, sc-iDFT provides a faithful description of the structure and thermodynamic properties of inhomogeneous weak polyelectrolyte systems across multiple length scales.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
6
|
Senebandith H, Li D, Srivastava S. Advances, Applications, and Emerging Opportunities in Electrostatic Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16965-16974. [PMID: 37976453 PMCID: PMC10702617 DOI: 10.1021/acs.langmuir.3c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Polyelectrolyte complex (PEC) hydrogels, which self-assemble via complexation of oppositely charged block polymers, have recently risen to prominence owing to their unique characteristics such as hierarchical microstructure, tunable bulk properties, and the ability to precisely assimilate charged cargos (i.e., proteins and nucleic acids). Significant foundational research has delineated the structure-property relationship of PEC hydrogels for use in a wide range of applications. In this Perspective, we summarize key findings on the microstructure and bulk properties of PEC hydrogels and discuss how intrinsic and extrinsic factors can be tuned to create specifically tailored PEC hydrogels with desired properties. We highlight successful applications of PEC hydrogels while offering insight into strategies to overcome their shortcomings and elaborate on emerging opportunities in the field of electrostatic self-assemblies.
Collapse
Affiliation(s)
- Holly Senebandith
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Defu Li
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Samanvaya Srivastava
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Institute
for Carbon Management, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Chremos A, Mussel M, Douglas JF, Horkay F. Ion Partition in Polyelectrolyte Gels and Nanogels. Gels 2023; 9:881. [PMID: 37998971 PMCID: PMC10670699 DOI: 10.3390/gels9110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Polyelectrolyte gels provide a load-bearing structural framework for many macroscopic biological tissues, along with the organelles within the cells composing tissues and the extracellular matrices linking the cells at a larger length scale than the cells. In addition, they also provide a medium for the selective transportation and sequestration of ions and molecules necessary for life. Motivated by these diverse problems, we focus on modeling ion partitioning in polyelectrolyte gels immersed in a solution with a single type of ionic valence, i.e., monovalent or divalent salts. Specifically, we investigate the distribution of ions inside the gel structure and compare it with the bulk, i.e., away from the gel structure. In this first exploratory study, we neglect solvation effects in our gel by modeling the gels without an explicit solvent description, with the understanding that such an approach may be inadequate for describing ion partitioning in real polyelectrolyte gels. We see that this type of model is nonetheless a natural reference point for considering gels with solvation. Based on our idealized polymer network model without explicit solvent, we find that the ion partition coefficients scale with the salt concentration, and the ion partition coefficient for divalent ions is higher than for monovalent ions over a wide range of Bjerrum length (lB) values. For gels having both monovalent and divalent salts, we find that divalent ions exhibit higher ion partition coefficients than monovalent salt for low divalent salt concentrations and low lB. However, we also find evidence that the neglect of an explicit solvent, and thus solvation, provides an inadequate description when compared to experimental observations. Thus, in future work, we must consider both ion and polymer solvation to obtain a more realistic description of ion partitioning in polyelectrolyte gels.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matan Mussel
- Department of Physics, University of Haifa, Haifa 3103301, Israel
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Kargaki ME, Arfara F, Iatrou H, Tsitsilianis C. pH-Sensitive Poly(acrylic acid)-g-poly(L-lysine) Charge-Driven Self-Assembling Hydrogels with 3D-Printability and Self-Healing Properties. Gels 2023; 9:512. [PMID: 37504391 PMCID: PMC10379232 DOI: 10.3390/gels9070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
We report the rheological behavior of aqueous solutions of a graft copolymer polyampholyte, constituted of polyacrylic acid (PAA) backbone grafted by Poly(L-lysine) (PAA-b-PLL). The graft copolymer self-assembles in aqueous media, forming a three-dimensional (3D) network through polyelectrolyte complexation of the oppositely charged PAA and PLL segments. Rheological investigations showed that the hydrogel exhibits interesting properties, namely, relatively low critical gel concentration, elastic response with slow dynamics, remarkable extended critical strain to flow, shear responsiveness, injectability, 3D printability and self-healing. Due to the weak nature of the involved polyelectrolyte segments, the hydrogel properties display pH-dependency, and they are affected by the presence of salt. Especially upon varying pH, the PLL secondary structure changes from random coil to α-helix, affecting the crosslinking structural mode and, in turn, the overall network structure as reflected in the rheological properties. Thanks to the biocompatibility of the copolymer constituents and the biodegradability of PLL, the designed gelator seems to exhibit potential for bioapplications.
Collapse
Affiliation(s)
- Maria-Eleni Kargaki
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Foteini Arfara
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | | |
Collapse
|
9
|
Wu Y, Tang Z, Ma S, Du L. The promising application of hydrogel microneedles in medical application. J Pharm Pharmacol 2023:rgad058. [PMID: 37330272 DOI: 10.1093/jpp/rgad058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Hydrogel microneedles are emerging, and promising microneedles mainly composed of swelling polymers. This review is intended to summarize the preparation materials, formation mechanisms, applications and existing problems of hydrogel microneedles. METHODS We collected the literature on the materials, preparation and application of hydrogel microneedles in recent years, and summarized their mechanism and application in drugs delivery. KEY FINDINGS Hydrogel microneedles have higher safety and capabilities of controlled drug release, and have been mainly used in tumour and diabetes treatment, as well as clinical monitoring. In recent years, hydrogel microneedles have shown great potential in drug delivery, and have played the role of whitening, anti-inflammatory and promoting healing. CONCLUSIONS As an emerging drug delivery idea, hydrogel microneedles for drug delivery has gradually become a research hotspot. This review will provide a systematic vision for the favourable development of hydrogel microneedles and their promising application in medicine, especially drug delivery.
Collapse
Affiliation(s)
- Yanping Wu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziyan Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shan Ma
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
10
|
Blanco PM, Narambuena CF, Madurga S, Mas F, Garcés JL. Unusual Aspects of Charge Regulation in Flexible Weak Polyelectrolytes. Polymers (Basel) 2023; 15:2680. [PMID: 37376324 PMCID: PMC10302168 DOI: 10.3390/polym15122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called "wrong side" of the isoelectric point); (v) the influence of macromolecular crowding on CR.
Collapse
Affiliation(s)
- Pablo M. Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Claudio F. Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos, Infap-CONICET & Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael 5600, Argentina;
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Josep L. Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO, Lleida University (UdL), 25003 Lleida, Catalonia, Spain;
| |
Collapse
|
11
|
Li D, Göckler T, Schepers U, Srivastava S. Polyelectrolyte Complex-Covalent Interpenetrating Polymer Network Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Defu Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tobias Göckler
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ute Schepers
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Center for Biological Physics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Landsgesell J, Beyer D, Hebbeker P, Košovan P, Holm C. The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - David Beyer
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Pascal Hebbeker
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
13
|
Schmidt BVKJ. Multicompartment Hydrogels. Macromol Rapid Commun 2022; 43:e2100895. [PMID: 35092101 DOI: 10.1002/marc.202100895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue-like character as well as high water-content, a broad range of applications are addressed with hydrogels, e.g. tissue engineering and wound dressings but also soft robotics, drug delivery, actuators and catalysis. Ways to tailor hydrogel properties are crosslinking mechanism, hydrogel shape and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g. via monomer choice, functionalization or compartmentalization. Especially, multicompartment hydrogels drive progress towards complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments, i.e. micellar/vesicular, droplets or multi-layers including various sub-categories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook towards future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices. This article is protected by copyright. All rights reserved.
Collapse
|