1
|
Ma Y, Wang Z, Jiang L, Zhang J, Ren C, Kou X, Liu S, Li Z. Bulky Phosphazenium Salt Controlling Chemoselective Terpolymerization of Epoxide, Anhydride and CO 2: From Well-Defined Block to Truly Random Copolymers. Angew Chem Int Ed Engl 2025; 64:e202416104. [PMID: 39353854 DOI: 10.1002/anie.202416104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Copolymers with precise compositions and controlled sequences are great appealing for high-performance polymeric materials, but their synthesis is very challenging. In this study, tetrakis[tris(dimethylamino)phosphoranylidenamino] phosphonium chloride (P5Cl) and triethylboron (TEB) were chosen as the binary catalyst to synthesize both well-defined block and truly random poly(ester-carbonate) copolymers via the one-pot/one-step terpolymerization of epoxide/anhydride/CO2 under metal-free conditions. The bulky nature of phosphazenium cation not only led to loose cation-anion pairs and enhanced the reactivity, but also provided the chain-end an appropriate protection and improved the controllability. In particular, P5Cl/TEB with a molar ratio of 1/0.5 showed an extraordinary chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CHO/CO2. Thus, well-defined block polyester-polycarbonate copolymers were synthesized by CHO/PA/CO2 terpolymerization. The chemoselectivity was easily tuned and the ROAC of CHO/PA and ROAC of CHO/CO2 occurred simultaneously with P5Cl/TEB=1/2, producing truly random poly(ester-carbonate) copolymers from CHO/PA/CO2. In addition, this P5Cl/TEB catalyst and the strategy to regulate its chemoselectivity are versatile for various anhydrides, epoxides and initiators. Thus, poly(ester-carbonate) copolymers with varying sequences, compositions, and topologies are successfully synthesized, making it possible to compare their properties and to expand their applications.
Collapse
Affiliation(s)
- Yukun Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zehao Wang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lihang Jiang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanli Ren
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Liu D, He S, Luo L, Yang W, Liu Y, Yang S, Shen Z, Chen S, Fan XH. Double gyroid-structured electrolyte based on an azobenzene-containing monomer and its polymer. SOFT MATTER 2024; 20:6424-6430. [PMID: 39087847 DOI: 10.1039/d4sm00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The self-assembled structure has a significant impact on the performance of ion conductors. We prepared a new type of electrolyte with self-assembled structures from an azobenzene-based liquid crystalline (LC) monomer and its corresponding polymer. By doping different amounts of monomers and lithium salt LiTFSI, the self-assembled nanostructure of the electrolyte was changed from lamellae to double gyroid. The ionic conductivity of the azobenzene-based electrolytes with the double gyroid structure was 1.64 × 10-4 S cm-1, higher than most PEO-based polymer electrolytes. The azobenzene-based system provides a new strategy to design solid electrolytes with self-assembled structures that may be potentially used in solid-state lithium-ion batteries.
Collapse
Affiliation(s)
- Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shangming He
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shichu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shuangjun Chen
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Fu XY, Yue TJ, Ren BH, Wang H, Ren WM, Lu XB. A Powerful Strategy for Synthesizing Block Copolymers via Bimetallic Synergistic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202401926. [PMID: 38415944 DOI: 10.1002/anie.202401926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Block copolymers, comprising polyether and polyolefin segments, are an important and promising category of functional materials. However, the lack of efficient strategies for the construction of polyether-b-polyolefin block copolymers have hindered the development of these materials. Herein, we propose a simple and efficient method to obtain various block copolymers through the copolymerization of epoxides and acrylates via bimetallic synergistic catalysis. The copolymerization of epoxides and acrylates proceeds in a sequence-controlled manner, where the epoxides-involved homo- or copolymerization occurs first, followed by the homopolymerization of acrylates initiated by the alkoxide species from the propagating polymer chain, thus yielding copolymers with a block structure. Notably, the high monomer compatibility of this powerful strategy provides a platform for synthesizing various polyacrylate-based block copolymers comprising polyether, polycarbonate, polythiocarbonate, polyester, and polyurethane segments, respectively.
Collapse
Affiliation(s)
- Xiang-Yu Fu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Hai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| |
Collapse
|
4
|
Min J, Bae S, Kawaguchi D, Tanaka K, Park MJ. Enhanced ionic conductivity in block copolymer electrolytes through interfacial passivation using mixed ionic liquids. J Chem Phys 2023; 159:174906. [PMID: 37921254 DOI: 10.1063/5.0173322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
We present a strategic approach for enhancing the ionic conductivity of block copolymer electrolytes. This was achieved by introducing mixed ionic liquids (ILs) with varying molar ratios, wherein the imidazolium cation was paired with either tetrafluoroborate (BF4) anion or bis(trifluoromethylsulfonyl)imide (TFSI) anion. Two polymer matrices, poly(4-styrenesulfonate)-b-polymethylbutylene (SSMB) and poly(4-styrenesulfonyl (trifluoromethanesulfonyl)imide)-b-polymethylbutylene (STMB), were synthesized for this purpose. All the SSMB and STMB containing mixed ILs showed hexagonal cylindrical structures, but the type of tethered acid group significantly influenced the interfacial properties. STMB electrolytes demonstrated enhanced segregation strength, which was attributed to strengthened Coulomb and hydrogen bonding interactions in the ionic domains, where the ILs were uniformly distributed. In contrast, the SSMB electrolytes exhibited increased concentration fluctuations because the BF4 anions were selectively sequestered at the block interfaces. This resulted in the effective confinement of imidazolium TFSI along the ionic domains, thereby preventing ion trapping in dead zones and facilitating rapid ion diffusion. Consequently, the SSMB electrolytes with mixed ILs demonstrated significantly improved ionic conductivities, surpassing the expected values based on the arithmetic average of the conductivities of each IL, whereas the ionic conductivity of the STMB was aligned with the expected average. The methodology explored in this study holds great promise for the development of solid-state polymer electrolytes.
Collapse
Affiliation(s)
- Jaemin Min
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suhyun Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
You H, Zhuo C, Yan S, Wang E, Cao H, Liu S, Wang X. CO 2 Deprotection-Mediated Switchable Polymerization for Precise Construction of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shuo Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
6
|
Fan M, Shen KH, Hall LM. Effect of Tethering Anions in Block Copolymer Electrolytes via Molecular Dynamics Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Moskalik MY, Astakhova VV. Triflamides and Triflimides: Synthesis and Applications. Molecules 2022; 27:5201. [PMID: 36014447 PMCID: PMC9414225 DOI: 10.3390/molecules27165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Among the variety of sulfonamides, triflamides (CF3SO2NHR, TfNHR) occupy a special position in organic chemistry. Triflamides are widely used as reagents, efficient catalysts or additives in numerous reactions. The reasons for the widespread use of these compounds are their high NH-acidity, lipophilicity, catalytic activity and specific chemical properties. Their strong electron-withdrawing properties and low nucleophilicity, combined with their high NH-acidity, makes it possible to use triflamides in a vast variety of organic reactions. This review is devoted to the synthesis and use of N-trifluoromethanesulfonyl derivatives in organic chemistry, medicine, biochemistry, catalysis and agriculture. Part of the work is a review of areas and examples of the use of bis(trifluoromethanesulfonyl)imide (triflimide, (CF3SO2)2NH, Tf2NH). Being one of the strongest NH-acids, triflimide, and especially its salts, are widely used as catalysts in cycloaddition reactions, Friedel-Crafts reactions, condensation reactions, heterocyclization and many others. Triflamides act as a source of nitrogen in C-amination (sulfonamidation) reactions, the products of which are useful building blocks in organic synthesis, catalysts and ligands in metal complex catalysis, and have found applications in medicine. The addition reactions of triflamide in the presence of oxidizing agents to alkenes and dienes are considered separately.
Collapse
Affiliation(s)
- Mikhail Y. Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | | |
Collapse
|