1
|
Hunter SJ, György C. Sub-micron colloidosomes with tuneable cargo release prepared using epoxy-functional diblock copolymer nanoparticles. J Colloid Interface Sci 2024; 675:999-1010. [PMID: 39003819 DOI: 10.1016/j.jcis.2024.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
HYPOTHESIS Pickering emulsions stabilized using epoxy-functional block copolymer nanoparticles should enable the formation of sub-micron colloidosomes that are stable with respect to Ostwald ripening and allow tuneable small-molecule cargo release. EXPERIMENTS Epoxy-functional diblock copolymer nanoparticles of 24 ± 4 nm were prepared via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization of methyl methacrylate (MMA) in n-dodecane. Sub-micron water-in-n-dodecane Pickering emulsions were prepared by high-pressure microfluidization. The epoxy groups were then ring-opened using 3-aminopropyltriethoxysilane (APTES) to prepare cross-linked colloidosomes. The colloidosomes survived removal of the aqueous phase using excess solvent. The silica shell thickness could be adjusted from 11 to 23 nm by varying the APTES/GlyMA molar ratio. The long-term stability of the colloidosomes was compared to precursor Pickering emulsions. Finally, the permeability of the colloidosomes was examined by encapsulation and release of a small molecule. FINDINGS The Pickering emulsion droplet diameter was reduced from 700 to 200 nm by increasing the salt concentration within the aqueous phase. In the absence of salt, emulsion droplets were unstable due to Ostwald ripening. However, emulsions prepared with 0.5 M NaCl are stable for at least one month. The cross-linked colloidosomes demonstrated much more stable than the precursor sub-micron emulsions prepared without salt. The precursor nanoemulsions exhibited complete release (>99 %) of an encapsulated dye, while higher APTES/GlyMA ratios resulted in much lower dye release, yielding nearly impermeable silica capsules that retained around 95 % of the dye.
Collapse
Affiliation(s)
- Saul J Hunter
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Csilla György
- Dainton Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, UK
| |
Collapse
|
2
|
Lusiani N, Pavlova E, Hoogenboom R, Sedlacek O. Cationic Ring-Opening Polymerization-Induced Self-Assembly (CROPISA) of 2-Oxazolines: From Block Copolymers to One-Step Gradient Copolymer Nanoparticles. Angew Chem Int Ed Engl 2024:e202416106. [PMID: 39612372 DOI: 10.1002/anie.202416106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
In recent years, polymerization-induced self-assembly (PISA) has emerged as a powerful method for the straightforward synthesis of polymer nanoparticles at high concentration. In this study, we describe for the first time the synthesis of poly(2-oxazoline) nanoparticles by dispersion cationic ring-opening polymerization-induced self-assembly (CROPISA) in n-dodecane. Specifically, a n-dodecane-soluble aliphatic poly(2-(3-ethylheptyl)-2-oxazoline) (PEHOx) block was chain-extended with poly(2-phenyl-2-oxazoline) (PPhOx). While the PhOx monomer is soluble in n-dodecane, its polymerization leads to n-dodecane-insoluble PPhOx, which leads to in situ self-assembly of the formed PEHOx-b-PPhOx copolymers. The polymerization kinetics and micellization upon second block formation were studied, and diverse nanoparticle dispersions were prepared, featuring varying block lengths and polymer concentrations, leading to dispersions with distinctive morphologies and physical properties. Finally, we developed a single-step protocol for the synthesis of polymer nanoparticles directly from monomers via gradient copolymerization CROPISA, which exploits the significantly greater reactivity of EHOx compared to that of PhOx during the statistical copolymerization of both monomers. Notably, this approach provides access to formulations with monomer compositions otherwise unattainable through the block copolymerization method. Given the synthetic versatility and application potential of poly(2-oxazolines), the developed CROPISA method can pave the way for advanced nanomaterials with favorable properties as demonstrated by using the obtained nanoparticles for stabilization of Pickering emulsions.
Collapse
Affiliation(s)
- Niccolò Lusiani
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40, Prague 2, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40, Prague 2, Czech Republic
| |
Collapse
|
3
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. RAFT Dispersion PISA with Poly(methyl methacrylate) as Stabilizer Block in Alcohol/Water: Unconventional PISA Morphology Transitions. Biomacromolecules 2024; 25:6135-6145. [PMID: 39158737 DOI: 10.1021/acs.biomac.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization-induced self-assembly (PISA) was conducted in the presence of poly(methyl methacrylate) (PMMA) stabilizer in ethanol/water mixture (80/20 by volume). Two different systems were explored by utilizing (i) 2-ethylhexyl methacrylate (EHMA) and (ii) n-butyl methacrylate (BMA). The morphology transitions of these systems were investigated by varying the polymerization conditions, i.e., the presence of the solvophilic comonomer MMA, the solids content, and the target degree of polymerization (DP). As observed in conventional PISA, the presence of solvophilic comonomer, increase in solids content and target DP promoted the formation of high-order morphology. However, unusual morphology transitions were observed whereby the morphology transformed from high-order morphologies to a mixture of spherical nanoparticles, worms, and vesicles and finally to vesicles with increasing target DP. This unusual evolution may be attributed to the limited solubility of PMMA in the ethanol/water solvent mixture, whereby PMMA is soluble at the polymerization temperature but insoluble at lower temperatures.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Polymer Laboratory, Science & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
György C, Armes SP. Recent Advances in Polymerization-Induced Self-Assembly (PISA) Syntheses in Non-Polar Media. Angew Chem Int Ed Engl 2023; 62:e202308372. [PMID: 37409380 PMCID: PMC10952376 DOI: 10.1002/anie.202308372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
It is well-known that polymerization-induced self-assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non-polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non-polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition-fragmentation chain-transfer (RAFT) polymerization in various n-alkanes, poly(α-olefins), mineral oil, low-viscosity silicone oils or supercritical CO2 are discussed in detail. Selected formulations exhibit thermally induced worm-to-sphere or vesicle-to-worm morphological transitions and the rheological properties of various examples of worm gels in non-polar media are summarized. Finally, visible absorption spectroscopy and small-angle X-ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small-angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms.
Collapse
Affiliation(s)
- Csilla György
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| | - Steven P. Armes
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
5
|
Stiti A, Cenacchi Pereira AM, Lecommandoux S, Taton D. Group-Transfer Polymerization-Induced Self-Assembly (GTPISA) in Non-polar Media: An Organocatalyzed Route to Block Copolymer Nanoparticles at Room Temperature. Angew Chem Int Ed Engl 2023; 62:e202305945. [PMID: 37403785 DOI: 10.1002/anie.202305945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Polymerization-induced self-assembly (PISA) enables the synthesis at large scale of a wide variety of functional nanoparticles. However, a large number of works are related to controlled radical polymerization (CRP) methods and are generally undertaken at elevated temperatures (>50 °C). Here is the first report on methacrylate-based nanoparticles fabricated by group transfer polymerization-induced self-assembly (GTPISA) in non-polar media (n-heptane). This GTPISA process is achieved at room temperature (RT) using 1-methoxy-1-(trimethylsiloxy)-2-methylprop-1-ene (MTS) and tetrabutylammonium bis-benzoate (TBABB) as initiator and organic catalyst, respectively. Under these conditions, well-defined metal-free and colorless diblock copolymers are produced with efficient crossover from the non-polar stabilizing poly(lauryl methacrylate) (PLMA) block to the non-soluble poly(benzyl methacrylate) (PBzMA) segment. The resulting PLMA-b-PBzMA block copolymers simultaneously self-assemble into nanostructures of various sizes and morphologies. GTPISA in non-polar solvent proceeds rapidly at RT and avoids the use of sulfur or halogenated compounds or metallic catalysts associated with the implementation of CRP methods, thus expanding the potential of PISA formulations for applications in non-polar environments.
Collapse
Affiliation(s)
- Assia Stiti
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
- Centre de Recherche de Solaize, T, otalEnergies OneTech, Chemin du Canal-BP 22, 69360, Solaize, France
| | | | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, 33607, Pessac cedex, France
| |
Collapse
|
6
|
György C, Smith T, Growney DJ, Armes SP. Synthesis and derivatization of epoxy-functional sterically-stabilized diblock copolymer spheres in non-polar media: does the spatial location of the epoxy groups matter? Polym Chem 2022. [DOI: 10.1039/d2py00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxy-functional sterically-stabilized diblock copolymer nanoparticles are prepared via PISA in mineral oil and then derivatized using various reagents and reaction conditions.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Timothy Smith
- Lubrizol Ltd, Nether Lane, Hazelwood, Derbyshire, DE56 4AN, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|