1
|
Wang R, Chen X, Cheng Y, Ding Z, Ming X, Zhang Y. An Intrinsic Photothermal Supramolecular Hydrogel with Robust Mechanical Strength and NIR-Responsive Shape Memory. Macromol Rapid Commun 2024; 45:e2300737. [PMID: 38521991 DOI: 10.1002/marc.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Indexed: 03/25/2024]
Abstract
Near-infrared (NIR)-triggered shape memory hydrogels with promising mechanical strength hold immense potential in the field of biomedical applications and soft actuators. However, the optical and mechanical properties of currently reported hydrogels usually suffer from limited solubility and dispersion of commonly used photothermal additives in hydrogels, thus restricting their practical implementations. Here,, a set of NIR-responsive shape memory hydrogels synthesized by polyaddition of diisocyanate-terminated poly(ethylene glycol), imidazolidinyl urea (IU), and p-benzoquinone dioxime (BQDO) is reported. The introduction of IU, a hydrogen bond reinforcing factor, significantly enhances the mechanical properties of the hydrogels, allowing for their tunable ranges of the ultimate tensile strength (0.4-2.5 MPa), elongation at break (210-450%), and Young's modulus (190-850 kPa). The unique hydrogels exhibit an intrinsic photothermal effect because of the covalently incorporated photothermal moiety (BQDO), and the photothermal supramolecular hydrogel shows controllable shape memory capabilities characterized by rapid recovery speed and high recovery ratio (>90%). This design provides new possibilities for applying shape memory hydrogels in the field of soft actuators.
Collapse
Affiliation(s)
- Ruyue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xingxing Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoqing Ming
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Chen P, Li F, Wang G, Ying B, Chen C, Tian Y, Chen M, Lee KJ, Ying WB, Zhu J. Toward Highly Matching the Dura Mater: A Polyurethane Integrating Biocompatible, Leak-Proof, and Self-Healing Properties. Macromol Biosci 2023; 23:e2300111. [PMID: 37222304 DOI: 10.1002/mabi.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Indexed: 05/25/2023]
Abstract
The dura mater is the final barrier against cerebrospinal fluid leakage and plays a crucial role in protecting and supporting the brain and spinal cord. Head trauma, tumor resection and other traumas damage it, requiring artificial dura mater for repair. However, surgical tears are often unavoidable. To address these issues, the ideal artificial dura mater should have biocompatibility, anti-leakage, and self-healing properties. Herein, this work has used biocompatible polycaprolactone diol as the soft segment and introduced dynamic disulfide bonds into the hard segment, achieving a multifunctional polyurethane (LSPU-2), which integrated the above mentioned properties required in surgery. In particular, LSPU-2 matches the mechanical properties of the dura mater and the biocompatibility tests with neuronal cells demonstrate extremely low cytotoxicity and do not cause any negative skin lesions. In addition, the anti-leakage properties of the LSPU-2 are confirmed by the water permeability tester and the 900 mm H2 O static pressure test with artificial cerebrospinal fluid. Due to the disulfide bond exchange and molecular chain mobility, LSPU-2 could be completely self-healed within 115 min at human body temperature. Thus, LSPU-2 comprises one of the most promising potential artificial dura materials, which is essential for the advancement of artificial dura mater and brain surgery.
Collapse
Affiliation(s)
- Pandi Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Fenglong Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guyue Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Chao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Tian
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Chen
- Department of Neurosurgery, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, P. R. China
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yoo-Seong, 34134, Republic of Korea
| | - Wu Bin Ying
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
3
|
Hou G, Ren R, Shang W, Weng Y, Liu J. Molecular Dynamics Simulation of Polymer Nanocomposites with Supramolecular Network Constructed via Functionalized Polymer End-Grafted Nanoparticles. Polymers (Basel) 2023; 15:3259. [PMID: 37571153 PMCID: PMC10422474 DOI: 10.3390/polym15153259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Since the proposal of self-healing materials, numerous researchers have focused on exploring their potential applications in flexible sensors, bionic robots, satellites, etc. However, there have been few studies on the relationship between the morphology of the dynamic crosslink network and the comprehensive properties of self-healing polymer nanocomposites (PNCs). In this study, we designed a series of modified nanoparticles with different sphericity (η) to establish a supramolecular network, which provide the self-healing ability to PNCs. We analyzed the relationship between the morphology of the supramolecular network and the mechanical performance and self-healing behavior. We observed that as η increased, the distribution of the supramolecular network became more uniform in most cases. Examination of the segment dynamics of polymer chains showed that the completeness of the supramolecular network significantly hindered the mobility of polymer matrix chains. The mechanical performance and self-healing behavior of the PNCs showed that the supramolecular network mainly contributed to the mechanical performance, while the self-healing efficiency was dominated by the variation of η. We observed that appropriate grafting density is the proper way to effectively enhance the mechanical and self-healing performance of PNCs. This study provides a unique guideline for designing and fabricating self-healing PNCs with modified Nanoparticles (NPs).
Collapse
Affiliation(s)
- Guanyi Hou
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Runhan Ren
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Wei Shang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.R.); (W.S.)
| | - Jun Liu
- Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
4
|
Xue Y, Lin J, Wan T, Luo Y, Ma Z, Zhou Y, Tuten BT, Zhang M, Tao X, Song P. Stretchable, Ultratough, and Intrinsically Self-Extinguishing Elastomers with Desirable Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207268. [PMID: 36683185 PMCID: PMC10037964 DOI: 10.1002/advs.202207268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Advanced elastomers are increasingly used in emerging areas, for example, flexible electronics and devices, and these real-world applications often require elastomers to be stretchable, tough and fire safe. However, to date there are few successes in achieving such a performance portfolio due to their different governing mechanisms. Herein, a stretchable, supertough, and self-extinguishing polyurethane elastomers by introducing dynamic π-π stacking motifs and phosphorus-containing moieties are reported. The resultant elastomer shows a large break strain of ≈2260% and a record-high toughness (ca. 460 MJ m-3 ), which arises from its dynamic microphase-separated microstructure resulting in increased entropic elasticity, and strain-hardening at large strains. The elastomer also exhibits a self-extinguishing ability thanks to the presence of both phosphorus-containing units and π-π stacking interactions. Its promising applications as a reliable yet recyclable substrate for strain sensors are demonstrated. The work will help to expedite next-generation sustainable advanced elastomers for flexible electronics and devices applications.
Collapse
Affiliation(s)
- Yijiao Xue
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Jinyou Lin
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Tao Wan
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2502Australia
| | - Yanlong Luo
- College of ScienceNanjing Forestry UniversityNanjing210037China
| | - Zhewen Ma
- Department of Polymer MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Bryan T. Tuten
- Centre for Materials ScienceSchool of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Meng Zhang
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Xinyong Tao
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Pingan Song
- Centre for Future MaterialsUnviersity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUnviersity of Southern QueenslandSpringfield4300Australia
| |
Collapse
|
5
|
Ye T, Fei L, Chen X, Yin Y, Wang C. Mechanoluminescent Device: In Situ Renewable Carbazole Derivatives Sandwiched by Self-Healing Disulfide-Containing Polyurethane for Mechanical Signals Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4623-4634. [PMID: 36644925 DOI: 10.1021/acsami.2c21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mechanoluminescent (ML) materials can emit visible light by utilizing mechanical energy, which shows unique advantages in visual mechanical sensing, displays, and biomechanical monitoring due to the correlation between force stimulation and luminescence intensity. Most organic ML materials exhibit luminescence intensity attenuation, disappearing completely with force stimulation and failing to recover. Here, organic luminogens (Cz-alkyl6) can be synthesized by introducing a soft alkyl chain into the carbazole, which exhibits ML emission with self-assembly units. Furthermore, organic luminogens can be generated repeatedly by simply recrystallizing the fracture crystal in situ after a short thermal treatment (70 °C) within 14 s. More importantly, the quantitative correlation between force pressure and ML intensity has been established by a sandwich-type ML device based on a novel carbazole derivative (Cz-alkyl6). The ML device presents a capacity for detecting mechanical signals up to 13 N according to its ML intensity (≤275 a.u.), exhibiting potential application value in engineering damage detection, anticounterfeiting, and advanced visual mechanical sensing.
Collapse
Affiliation(s)
- Ting Ye
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang Fei
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunjie Yin
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoxia Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Bakkali-Hassani C, Berne D, Ladmiral V, Caillol S. Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|