1
|
Ren T, Hinton ZR, Huang R, Epps TH, Korley L, Gorte RJ, Lee D. Increase in the effective viscosity of polyethylene under extreme nanoconfinement. J Chem Phys 2024; 160:024909. [PMID: 38214386 DOI: 10.1063/5.0185144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Understanding polymer transport in nanopores is crucial for optimizing heterogeneously catalyzed processes in polymer upcycling and fabricating high-performance nanocomposite films and membranes. Although confined polymer dynamics have been extensively studied, the behavior of polyethylene (PE)-the most widely used commodity polymer-in pores smaller than 20 nm remains largely unexplored. We investigate the effects of extreme nanoconfinement on PE transport using capillary rise infiltration in silica nanoparticle packings with average pore radii ranging from ∼1 to ∼9 nm. Using in situ ellipsometry and the Lucas-Washburn model, we discover a previously unknown inverse relationship between effective viscosity (ηeff) and average pore radius (Rpore). Additonally, we determine that PE transport under these extreme conditions is primarily governed by physical confinement, rather than pore surface chemistry. We refine an existing theory to provide a generalized formalism to describe the polymer transport dynamics over a wide range of pore radii (from 1 nm and larger). Our results offer valuable insights for optimizing catalyst supports in polymer upcycling and improving infiltration processes for nanocomposite fabrication.
Collapse
Affiliation(s)
- Tian Ren
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, USA
| | - Zachary R Hinton
- Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Renjing Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Thomas H Epps
- Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - LaShanda Korley
- Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Raymond J Gorte
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Plastics Innovation, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
2
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Tannoury L, Solar M, Paul W. Structure and dynamics of a 1,4-polybutadiene melt in an alumina nanopore: A molecular dynamics simulation. J Chem Phys 2022; 157:124901. [DOI: 10.1063/5.0105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results of Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PBD)confined in a cylindrical alumina nanopore of diameter 10 nm. The simulations are done at three different temperaturesabove the glass transition temperature T g . We investigate the density layering across the nanopore as well as theorientational ordering in the polymer melt, brought about by the confinement, on both the segmental and chain scales.For the chain scale ordering, the magnitude and orientation of the axes of the gyration tensor ellipsoid of single chainsare studied and are found to prefer to align parallel to the pore axis. Even though double bonds near the wall arepreferentially oriented along the pore walls, studying the nematic order parameter indicates that there is no nematicordering at the melt-wall interface. As for the dynamics in the melt, we focus here on the mean-square-displacement ofthe monomers for several layers across the nanopore as well as the movement of the chain center of mass which bothdisplay a slowing down of the dynamics in the layer at the wall. We also show the strong adsorption of the monomersto the pore wall at lower temperatures.
Collapse
Affiliation(s)
- Lama Tannoury
- Institute of Physics, Martin Luther University Halle Wittenberg, Germany
| | - Mathieu Solar
- Institut f. Physik, Institut National des Sciences Appliques, France
| | - Wolfgang Paul
- Institut f. Physik, Martin-Luther-Universität Halle-Wittenberg, Germany
| |
Collapse
|
4
|
Venkatesh RB, Lee D. Conflicting Effects of Extreme Nanoconfinement on the Translational and Segmental Motion of Entangled Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Bharath Venkatesh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Resende PM, Gutiérrez-Fernández E, Aguirre MH, Nogales A, Martín-González M. Polyethylene three-dimensional nano-networks: How lateral chains affect metamaterial formation. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Zhang T, Winey KI, Riggleman RA. Conformation and dynamics of ring polymers under symmetric thin film confinement. J Chem Phys 2020; 153:184905. [PMID: 33187402 DOI: 10.1063/5.0024729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the structure and dynamics of polymers under confinement has been of widespread interest, and one class of polymers that have received comparatively little attention under confinement is that of ring polymers. The properties of non-concatenated ring polymers can also be important in biological fields because ring polymers have been proven to be a good model to study DNA organization in the cell nucleus. From our previous study, linear polymers in a cylindrically confined polymer melt were found to segregate from each other as a result of the strong correlation hole effect that is enhanced by the confining surfaces. By comparison, our subsequent study of linear polymers in confined thin films at similar levels of confinements found only the onset of segregation. In this study, we use molecular dynamics simulation to investigate the chain conformations and dynamics of ring polymers under planar (1D) confinement as a function of film thickness. Our results show that conformations of ring polymers are similar to the linear polymers under planar confinement, except that ring polymers are less compressed in the direction normal to the walls. While we find that the correlation hole effect is enhanced under confinement, it is not as pronounced as the linear polymers under 2D confinement. Finally, we show that chain dynamics far above Tg are primarily affected by the friction from walls based on the monomeric friction coefficient we get from the Rouse mode analysis.
Collapse
Affiliation(s)
- Tianren Zhang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I Winey
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Bailey EJ, Riggleman RA, Winey KI. Polymer Conformations and Diffusion through a Monolayer of Confining Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Zhang K, Xu D, Zhao L, Lu ZY. Proper adsorptive confinement for efficient production of cyclic polymers: a dissipative particle dynamics study. Phys Chem Chem Phys 2020; 22:18703-18710. [PMID: 32803209 DOI: 10.1039/d0cp02210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Efficient production of cyclic polymers has been a hot topic in the past few decades. In this work, we found that an adsorptive porous template with an appropriate size has the capability to accelerate the ring closure of a linear polymer chain in a dilute solution with a higher yield. The restricted pore provides a confined space and the effect of its characteristics, such as pore size, shape and adsorption strength on cyclization time, is systematically studied by using dissipative particle dynamics simulations. As a prerequisite of cyclization in confinement, the entry process of linear precursors has been studied as well. Total production time is governed by a tradeoff between the size effect caused by decreasing the size of the pore and the adsorption of the pore. The strong size effect suppresses polymer entry but accelerates cyclization. The stronger adsorption promotes polymer entry but decelerates cyclization. According to our defined total production time, a small spherical confinement with strong adsorption results in a shorter total production time of cyclic polymers compared to that in free solution. If chain cyclization is permitted during its entering the confinement, the interplay between steric hindrance caused by pore size and adsorption provides an additional 'virtual' confinement at the boundary between confinement and free solution. In this case, an optimal cyclization time is observed with an appropriate adsorption strength under small confinement. Our results provide useful guidance for designing suitable porous templates for producing cyclic polymers with high efficiency.
Collapse
Affiliation(s)
- Kuo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | | | | | | |
Collapse
|
9
|
Li J, Lu Y, Hao L, Zhang R, Ding M, Shi T. Dynamics Transition of Polymer Films Induced by Polymer–Obstacle Entanglements on Rough Surfaces. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiaxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lili Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
Bayat H, Raoufi M, Zamrik I, Schönherr H. Poly(diethylene glycol methylether methacrylate) Brush-Functionalized Anodic Alumina Nanopores: Curvature-Dependent Polymerization Kinetics and Nanopore Filling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2663-2672. [PMID: 32073275 DOI: 10.1021/acs.langmuir.9b03700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on the synthesis and characterization of poly(diethylene glycol methylether methacrylate) (PDEGMA) brushes by surface-initiated atom transfer radical polymerization inside ordered cylindrical nanopores of anodic aluminum oxide with different pore radii between 20 and 185 nm. In particular, the dependence of polymerization kinetics and the degree of pore filling on the interfacial curvature were analyzed. On the basis of field emission scanning electron microscopy data and thermal gravimetric analysis (TGA), it was concluded that the polymerization rate was faster at the pore orifice compared to the pore interior and also as compared to the analogous reaction carried out on flat aluminum oxide substrates. The apparent steady-state polymerization rate near the orifice increased with decreasing pore size. Likewise, the overall apparent polymerization rate estimated from TGA data indicated stronger confinement for pores with increased curvature as well as increased mass transport limitations due to the blockage of the pore orifice. Only for pores with a diameter to length ratio of ∼1, PDEGMA brushes were concluded to grow uniformly with constant thickness. However, because of mass transport limitations in longer pores, incomplete pore filling was observed, which leads presumably to a PDEGMA gradient brush. This study contributes to a better understanding of polymer brush-functionalized nanopores and the impact of confinement, in which the control of polymer brush thickness together with grafting density along the nanopores is key for applications of PDEGMA brushes confined inside nanopores.
Collapse
Affiliation(s)
- Haider Bayat
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Imad Zamrik
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
11
|
Zhang Z, Ding J, Ocko BM, Fluerasu A, Wiegart L, Zhang Y, Kobrak M, Tian Y, Zhang H, Lhermitte J, Choi CH, Fisher FT, Yager KG, Black CT. Nanoscale viscosity of confined polyethylene oxide. Phys Rev E 2020; 100:062503. [PMID: 31962430 DOI: 10.1103/physreve.100.062503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 11/07/2022]
Abstract
Complex fluids near interfaces or confined within nanoscale volumes can exhibit substantial shifts in physical properties compared to bulk, including glass transition temperature, phase separation, and crystallization. Because studies of these effects typically use thin film samples with one dimension of confinement, it is generally unclear how more extreme spatial confinement may influence these properties. In this work, we used x-ray photon correlation spectroscopy and gold nanoprobes to characterize polyethylene oxide confined by nanostructured gratings (<100nm width) and measured the viscosity in this nanoconfinement regime to be ∼500 times the bulk viscosity. This enhanced viscosity occurs even when the scale of confinement is several times the polymer's radius of gyration, consistent with previous reports of polymer viscosity near flat interfaces.
Collapse
Affiliation(s)
- Zheng Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Junjun Ding
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Benjamin M Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Yugang Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Mark Kobrak
- Brooklyn College and the Graduate Center of the City University of New York, Brooklyn, New York, USA
| | - Ye Tian
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Julien Lhermitte
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Frank T Fisher
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
12
|
|
13
|
Jose J, Swaminathan N. Response of adhesive polymer interfaces to repeated mechanical loading and the spatial variation of diffusion coefficient and stresses in a deforming polymer film. Phys Chem Chem Phys 2019; 21:11266-11283. [PMID: 31099805 DOI: 10.1039/c9cp00576e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive molecular simulations are conducted to show that polymer crosslinks preserve the strength of solid-polymer (melt) interfaces when they are subjected to repeated mechanical loading. The spatial variation of the diffusion coefficient and local stresses is also investigated along the polymer thickness, during deformation. After each loading cycle, a reduction in entanglement strength is observed at the fracture site. The work of adhesion also decreases over consecutive loading cycles, when fracture is induced at the same site. Reduction in both, the work of adhesion and the entanglement strength, decreases as the crosslink density increases. Diffusion coefficient and stresses vary significantly and in a complex manner along the film thickness during the entire deformation process. These variations were due to peculiar configurations occurring at each instance of separation, which are analyzed and explained in this work. The variation of diffusion coefficient during deformation suggests that other dynamic properties, such as viscosity, also vary spatially during polymer deformation.
Collapse
Affiliation(s)
- Jeeno Jose
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Narasimhan Swaminathan
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
14
|
Politidis C, Alexandris S, Sakellariou G, Steinhart M, Floudas G. Dynamics of Entangled cis-1,4-Polyisoprene Confined to Nanoporous Alumina. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00523] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
15
|
Karatrantos A, Composto RJ, Winey KI, Kröger M, Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers (Basel) 2019; 11:E876. [PMID: 31091725 PMCID: PMC6571671 DOI: 10.3390/polym11050876] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022] Open
Abstract
This review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent. Models with soft potentials or slip-springs can estimate accurately the tube model predictions in polymer melts enabling us to reach larger length scales and simulate well entangled polymers. However, in polymer nanocomposites, reptational polymer diffusion is more complicated due to nanoparticle fillers size, loading, geometry and polymer-nanoparticle interactions.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| |
Collapse
|
16
|
Tarnacka M, Talik A, Kamińska E, Geppert-Rybczyńska M, Kaminski K, Paluch M. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice,School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | | | | | | |
Collapse
|
17
|
Agarwal T, Manjunath GP, Habib F, Chatterji A. Bacterial chromosome organization. II. Few special cross-links, cell confinement, and molecular crowders play the pivotal roles. J Chem Phys 2019; 150:144909. [PMID: 30981247 DOI: 10.1063/1.5058217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using a coarse-grained bead-spring model of bacterial chromosomes of Caulobacter crescentus and Escherichia coli, we show that just 33 and 38 effective cross-links in 4017 and 4642 monomer chains at special positions along the chain contour can lead to the large-scale organization of the DNA polymer, where confinement effects of the cell walls play a key role in the organization. The positions of the 33/38 cross-links along the chain contour are chosen from the Hi-C contact map of bacteria C. crescentus and E. coli. We represent 1000 base pairs as a coarse-grained monomer in our bead-spring flexible ring polymer model of the DNA polymer. Thus, 4017/4642 beads on a flexible ring polymer represent the C. crescentus/E. coli DNA polymer with 4017/4642 kilo-base pairs. Choosing suitable parameters from Paper I, we also incorporate the role of compaction of the polymer coil due to the presence of molecular crowders and the ability of the chain to release topological constraints. We validate our prediction of the organization of the bacterial chromosomes with available experimental data and also give a prediction of the approximate positions of different segments within the cell. In the absence of confinement, the minimal number of effective cross-links required to organize the DNA chains of 4017/4642 monomers was 60/82 [Agarwal et al., Europhys. Lett. 121, 18004 (2018) and Agarwal et al., J. Phys.: Condens. Matter 30, 034003 (2018)].
Collapse
Affiliation(s)
- Tejal Agarwal
- IISER-Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - G P Manjunath
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, New York 10016, USA
| | - Farhat Habib
- Inmobi-Cessna Business Park, Outer Ring Road, Bangalore 560103, India
| | | |
Collapse
|
18
|
Li S, Ding M, Shi T. Spatial distribution of entanglements and dynamics in polymer films confined by smooth walls. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Ring DJ, Riggleman RA, Lee D. Critical Contact Angle to Induce Capillary Rise of Polymers in Nanopores Does Not Depend on Chain Length. ACS Macro Lett 2019; 8:31-35. [PMID: 35619407 DOI: 10.1021/acsmacrolett.8b00953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We study the effect of physical confinement on the capillary infiltration of polymers into cylindrical nanopores using molecular dynamics simulations. In particular, we probe whether the critical contact angle (θc) above which capillary rise infiltration ceases to occur changes for long-chain polymers, possibly due to loss of conformation entropy induced by chain confinement. Surprisingly, θc does not strongly depend on the length of polymer chains and stays constant for large N. A free energy model is developed to show that θc depends strongly on the size of statistical segments rather than N, which we confirm by performing MD simulations of infiltration with semiflexible polymers. These results could provide guidelines in manufacturing polymer nanostructures and nanocomposites using capillary rise infiltration.
Collapse
Affiliation(s)
- David J. Ring
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Zhang T, Winey KI, Riggleman RA. Polymer Conformations and Dynamics under Confinement with Two Length Scales. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Pressly JF, Riggleman RA, Winey KI. Polymer Diffusion Is Fastest at Intermediate Levels of Cylindrical Confinement. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Katsumata R, Dulaney AR, Kim CB, Ellison CJ. Glass Transition and Self-Diffusion of Unentangled Polymer Melts Nanoconfined by Different Interfaces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Reika Katsumata
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Austin R. Dulaney
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chae Bin Kim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher J. Ellison
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemical Engineering and Materials Science, The University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Hor JL, Wang H, Fakhraai Z, Lee D. Effect of Physical Nanoconfinement on the Viscosity of Unentangled Polymers during Capillary Rise Infiltration. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00966] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Choi KI, Kim TH, Yuan G, Satija SK, Koo J. Dynamics of Entangled Polymers Confined between Graphene Oxide Sheets as Studied by Neutron Reflectivity. ACS Macro Lett 2017. [DOI: 10.1021/acsmacrolett.7b00416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ki-In Choi
- Neutron
Science Center, Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Korea
- Department
of Organic Materials Engineering, Chungnam Nation University, Daejeon, 34134, Korea
| | - Tae-Ho Kim
- Neutron
Science Center, Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Korea
| | - Guangcui Yuan
- Center
for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sushil K. Satija
- Center
for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jaseung Koo
- Neutron
Science Center, Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Korea
| |
Collapse
|
26
|
Karatrantos A, Composto RJ, Winey KI, Clarke N. Polymer and spherical nanoparticle diffusion in nanocomposites. J Chem Phys 2017; 146:203331. [DOI: 10.1063/1.4981258] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Argyrios Karatrantos
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
27
|
Krutyeva M, Pasini S, Monkenbusch M, Allgaier J, Maiz J, Mijangos C, Hartmann-Azanza B, Steinhart M, Jalarvo N, Richter D. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study. J Chem Phys 2017; 146:203306. [DOI: 10.1063/1.4974836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Krutyeva
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - S. Pasini
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - M. Monkenbusch
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - J. Allgaier
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - J. Maiz
- Instituto de Ciencia y Tecnología de Polímeros, CSIC. Juan de la Cierva 3, Madrid 28006, Spain
| | - C. Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC. Juan de la Cierva 3, Madrid 28006, Spain
| | - B. Hartmann-Azanza
- Institut für Chemie neuer Materialen, Universität Osnabrück, Barbarastraße 7, D-46069 Osnabrück, Germany
| | - M. Steinhart
- Institut für Chemie neuer Materialen, Universität Osnabrück, Barbarastraße 7, D-46069 Osnabrück, Germany
| | - N. Jalarvo
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | - D. Richter
- Jülich Centre for Neutron Science (JCNS) and Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
28
|
Tanis I, Meyer H, Salez T, Raphaël E, Maggs AC, Baschnagel J. Molecular dynamics simulation of the capillary leveling of viscoelastic polymer films. J Chem Phys 2017; 146:203327. [PMID: 28571341 DOI: 10.1063/1.4978938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Surface tension-driven flow techniques have recently emerged as an efficient means of shedding light into the rheology of thin polymer films. Motivated by experimental and theoretical approaches in films bearing a varying surface topography, we present results on the capillary relaxation of a square pattern at the free surface of a viscoelastic polymer film, using molecular dynamics simulations of a coarse-grained polymer model. Height profiles are monitored as a function of time after heating the system above its glass-transition temperature and their time dependence is fitted to the theory of capillary leveling. Results show that the viscosity is not constant, but time dependent. In addition to providing a complementary insight about the local inner mechanisms, our simulations of the capillary-leveling process therefore probe the viscoelasticity of the polymer and not only its viscosity, in contrast to most experimental approaches.
Collapse
Affiliation(s)
- I Tanis
- Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - H Meyer
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67000 Strasbourg, France
| | - T Salez
- Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - E Raphaël
- Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - A C Maggs
- Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - J Baschnagel
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67000 Strasbourg, France
| |
Collapse
|
29
|
Ramírez-Hernández A, Peters BL, Schneider L, Andreev M, Schieber JD, Müller M, de Pablo JJ. A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation. J Chem Phys 2017; 146:014903. [PMID: 28063448 DOI: 10.1063/1.4972582] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coarse grained simulation approaches provide powerful tools for the prediction of the equilibrium properties of polymeric systems. Recent efforts have sought to develop coarse-graining strategies capable of predicting the non-equilibrium behavior of entangled polymeric materials. Slip-link and slip-spring models, in particular, have been shown to be capable of reproducing several key aspects of the linear response and rheology of polymer melts. In this work, we extend a previously proposed multi-chain slip-spring model in a way that correctly incorporates the effects of the fluctuating environment in which polymer segments are immersed. The model is used to obtain the equation of state associated with the slip-springs, and the results are compared to those of related numerical approaches and an approximate analytical expression. The model is also used to examine a polymer melt confined into a thin film, where an inhomogeneous distribution of polymer segments is observed, and the corresponding inhomogeneities associated with density fluctuations are reflected on the spatial slip-spring distribution.
Collapse
Affiliation(s)
- Abelardo Ramírez-Hernández
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Brandon L Peters
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ludwig Schneider
- Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
| | - Marat Andreev
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jay D Schieber
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
| | - Juan J de Pablo
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| |
Collapse
|
30
|
Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036602. [PMID: 28134134 DOI: 10.1088/1361-6633/aa5284] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass-a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric systems.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | |
Collapse
|
31
|
Li S, Li J, Ding M, Shi T. Effects of Polymer–Wall Interactions on Entanglements and Dynamics of Confined Polymer Films. J Phys Chem B 2017; 121:1448-1454. [DOI: 10.1021/acs.jpcb.7b00225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sijia Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
- Department
of Fire Command, Chinese People’s Armed Police Force Academy, Langfang 065000, P. R. China
| | - Jiawei Li
- School
of Mathematics, Beijing Normal University, Beijing 100875, P. R. China
| | - Mingming Ding
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
| | - Tongfei Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
| |
Collapse
|
32
|
Deng S, Arinstein A, Zussman E. Size-dependent mechanical properties of glassy polymer nanofibers via molecular dynamics simulations. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shengwei Deng
- Department of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Arkadii Arinstein
- Department of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Eyal Zussman
- Department of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 32000 Israel
| |
Collapse
|
33
|
Alexandris S, Papadopoulos P, Sakellariou G, Steinhart M, Butt HJ, Floudas G. Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01484] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stelios Alexandris
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Periklis Papadopoulos
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
34
|
Kolluru PV, Chasiotis I. A master curve for the size and strain rate dependent large deformation behavior of PS nanofibers at room temperature. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Chernova E, Petukhov D, Boytsova O, Alentiev A, Budd P, Yampolskii Y, Eliseev A. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes. Sci Rep 2016; 6:31183. [PMID: 27498607 PMCID: PMC4976320 DOI: 10.1038/srep31183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.
Collapse
Affiliation(s)
- Ekaterina Chernova
- Department of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitrii Petukhov
- Department of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga Boytsova
- Department of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander Alentiev
- A. V. Topchiev Institute of Petrochemical Synthesis (TIPS) Russian Academy of Sciences, Moscow, 119991, Russia
| | - Peter Budd
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Yuri Yampolskii
- A. V. Topchiev Institute of Petrochemical Synthesis (TIPS) Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrei Eliseev
- Department of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
36
|
Affiliation(s)
- Chia-Chun Lin
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Emmabeth Parrish
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Russell J. Composto
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
37
|
Yao Y, Sakai T, Steinhart M, Butt HJ, Floudas G. Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, 55128 Mainz, Germany
| | - Takamasa Sakai
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | - George Floudas
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
38
|
Muanchan P, Suzuki S, Kyotani T, Ito H. One-dimensional polymer nanofiber arrays with high aspect ratio obtained by thermal nanoimprint method. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paritat Muanchan
- Research Center for GREEN Materials and Advanced Processing (GMAP), Graduate School of Science and Engineering; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
| | - Shohei Suzuki
- Research Center for GREEN Materials and Advanced Processing (GMAP), Graduate School of Science and Engineering; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1, Katahira; Aoba-Ku Sendai 980-8577 Japan
| | - Hiroshi Ito
- Research Center for GREEN Materials and Advanced Processing (GMAP), Graduate School of Science and Engineering; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
- Graduate School of Organic Materials Science; Yamagata University 4-3-16 Jonan; Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
39
|
Sussman DM. Spatial distribution of entanglements in thin free-standing films. Phys Rev E 2016; 94:012503. [PMID: 27575172 DOI: 10.1103/physreve.94.012503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 11/07/2022]
Abstract
We simulate entangled linear polymers in free-standing thin film geometries where the confining dimension is on the same scale as or smaller than the bulk chain dimensions. We compare both film-averaged and layer-resolved, spatially inhomogeneous measures of the polymer structure and entanglement network with theoretical models. We find that these properties are controlled by the ratio of both chain- and entanglement-strand length scales to the film thickness. While the film-averaged entanglement properties can be accurately predicted, we identify outstanding challenges in understanding the spatially resolved character of the heterogeneities in the entanglement network, particularly when the scale of both the entanglement strand and the chain end-to-end vector is comparable to or smaller than the film thickness.
Collapse
Affiliation(s)
- Daniel M Sussman
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
40
|
Karatrantos A, Clarke N, Composto RJ, Winey KI. Entanglements in polymer nanocomposites containing spherical nanoparticles. SOFT MATTER 2016; 12:2567-2574. [PMID: 26853774 DOI: 10.1039/c5sm02010g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate the polymer packing around nanoparticles and polymer/nanoparticle topological constraints (entanglements) in nanocomposites containing spherical nanoparticles in comparison to pure polymer melts using molecular dynamics (MD) simulations. The polymer-nanoparticle attraction leads to good dispersion of nanoparticles. We observe an increase in the number of topological constraints (decrease of total entanglement length Ne with nanoparticle loading in the polymer matrix) in nanocomposites due to nanoparticles, as evidenced by larger contour lengths of the primitive paths. An increase of the nanoparticle radius reduces the polymer-particle entanglements. These studies demonstrate that the interaction between polymers and nanoparticles does not affect the total entanglement length because in nanocomposites with small nanoparticles, the polymer-nanoparticles topological constraints dominate.
Collapse
Affiliation(s)
- Argyrios Karatrantos
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK.
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
41
|
Shavit A, Riggleman RA. The dynamics of unentangled polymers during capillary rise infiltration into a nanoparticle packing. SOFT MATTER 2015; 11:8285-8295. [PMID: 26355281 DOI: 10.1039/c5sm01866h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although highly packed polymer nanocomposites (PNCs) are important for a wide array of applications, preparing them remains difficult because of the poor dispersion of NPs at high loading fractions. One method to successfully prepare PNCs with high loadings is through capillary rise infiltration, as previously shown by Huang et al., although the mechanism of polymer infiltration remains largely unknown. We use molecular dynamics simulations to directly simulate the process of capillary rise infiltration, and we show that the polymers follow Lucas-Washburn dynamics. We observe a wetting front that precedes bulk infiltration, and chains belonging to this front are highly adsorbed to NPs. We also investigate the viscosity of the model polymers both globally and locally in supported and free-standing films, and we find reduced viscosity near the surface of the films and increased viscosity near the supporting substrate, similar to the results of local relaxation times. The reduction in the viscosity at the free surface for short, oligomeric polymers is smaller than for higher molecular weight polymers, and the ratio of the surface viscosities is most consistent with the predictions of the Lucas-Washburn equation. Our results introduce the mechanism by which polymers infiltrate a highly packed NP film, which may shed light on better ways to prepare these materials for energy storage applications and protective coatings.
Collapse
Affiliation(s)
- Amit Shavit
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Chen J, Li L, Zhou D, Wang X, Xue G. Effect of geometric curvature on vitrification behavior for polymer nanotubes confined in anodic aluminum oxide templates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032306. [PMID: 26465472 DOI: 10.1103/physreve.92.032306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 06/05/2023]
Abstract
The glass transition behavior of polystyrene (PS) nanotubes confined in cylindrical alumina nanopores was studied as a function of pore diameter (d) and polymer tube thickness (δ). Both the calorimetric glass transition temperature and the microstructure measured by a nonradiative energy transfer method indicated that the polymer nanotube, or concave polymer thin film, exhibited significant differences in vitrification behavior compared to the planar one. A closer interchain proximity and an increased T_{g} were observed for polymer nanotubes with respect to the bulk polymer. T_{g} for polymer nanotubes was primarily dependent on the curvature radius d of the template, while it was less dependent on the thickness δ of the PS tube wall in the range of 11-23 nm. For small nanotubes (d=55nm), the T_{g} increased as high as 18 °C above the bulk value. This vitrified property reverted back to the bulk value when the substrate was chemically removed, which indicated the crucial importance of the interfacial effect imposed by the hard wall with a concave geometry.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Linling Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Gi Xue
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University), Ministry of Education, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
43
|
Lange F, Judeinstein P, Franz C, Hartmann-Azanza B, Ok S, Steinhart M, Saalwächter K. Large-Scale Diffusion of Entangled Polymers along Nanochannels. ACS Macro Lett 2015; 4:561-565. [PMID: 35596305 DOI: 10.1021/acsmacrolett.5b00213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in large-scale polymer diffusivity along interfaces, arising from transient surface contacts at the nanometer scale, are not well understood. Using proton pulsed-gradient NMR, we here study the equilibrium micrometer-scale self-diffusion of poly(butadiene) chains along ∼100 μm long, 20 and 60 nm wide channels in alumina, which is a system without confinement-related changes in segmental relaxation time. Unlike previous reports on nonequilibrium start-up diffusion normal to an interface or into particulate nanocomposites, we find a reduction of the diffusivity that appears to depend only upon the pore diameter but not on the molecular weight in a range between 2 and 24 kg/mol. We rationalize this by a simple volume-average model for the monomeric friction coefficient, which suggests a 10-fold surface-enhanced friction on the scale of a single molecular layer. Further support is provided by applying our model to the analysis of published data on large-scale diffusion in thin films.
Collapse
Affiliation(s)
- Frank Lange
- Institut
für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.
7, D-06120 Halle, Germany
| | - Patrick Judeinstein
- Laboratoire Léon Brillouin, CNRS-CEA UMR 12, Commissariat
à l’énergie atomique et aux énergies alternatives
− Saclay, Gif sur Yvette F-91191 Cedex, France
| | - Cornelius Franz
- Institut
für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.
7, D-06120 Halle, Germany
| | - Brigitte Hartmann-Azanza
- Institut
für Chemie neuer Materialien, Universität Osnabrück, Barbarastr.
7, D-46069 Osnabrück, Germany
| | - Salim Ok
- Institut
für Chemie neuer Materialien, Universität Osnabrück, Barbarastr.
7, D-46069 Osnabrück, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, Barbarastr.
7, D-46069 Osnabrück, Germany
| | - Kay Saalwächter
- Institut
für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.
7, D-06120 Halle, Germany
| |
Collapse
|