1
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Chen J, Bao C, Han R, Li GZ, Zheng Z, Wang Y, Zhang Q. From poly(vinylimidazole) to cationic glycopolymers and glyco-particles: effective antibacterial agents with enhanced biocompatibility and selectivity. Polym Chem 2022. [DOI: 10.1039/d1py01711j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cationic glycopolymers have attracted great attention as a new type of antibacterial material.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chunyang Bao
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rui Han
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Guang-Zhao Li
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Zhaoquan Zheng
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yan Wang
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qiang Zhang
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
3
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco-Inside Nano-Assemblies through RAFT Dispersion Polymerization of Galactose-Decorated Monomer. Angew Chem Int Ed Engl 2021; 60:11098-11103. [PMID: 33565244 PMCID: PMC8252037 DOI: 10.1002/anie.202015692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/31/2021] [Indexed: 01/15/2023]
Abstract
Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| | - Thomas Bick
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Johannes Martin
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Petra Wendler
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Alexander Böker
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Ulrich Glebe
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| |
Collapse
|
6
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco‐Inside Nano‐Assemblies through RAFT Dispersion Polymerization of Galactose‐Decorated Monomer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| | - Thomas Bick
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Johannes Martin
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Petra Wendler
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| |
Collapse
|
7
|
Lequieu J, Magenau AJD. Reaction-induced phase transitions with block copolymers in solution and bulk. Polym Chem 2021. [DOI: 10.1039/d0py00722f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reaction-induced phase transitions use chemical reactions to drive macromolecular organisation and self-assembly. This review highlights significant and recent advancements in this burgeoning field.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | | |
Collapse
|
8
|
Liu D, Sun H, Xiao Y, Chen S, Cornel EJ, Zhu Y, Du J. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J Control Release 2020; 326:365-386. [DOI: 10.1016/j.jconrel.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
9
|
Yang J, Du Q, Li L, Wang T, Feng Y, Nieh MP, Sheng J, Chen G. Glycosyltransferase-Induced Morphology Transition of Glycopeptide Self-Assemblies with Proteoglycan Residues. ACS Macro Lett 2020; 9:929-936. [PMID: 35648603 DOI: 10.1021/acsmacrolett.0c00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously proposed the deprotection-induced block copolymer self-assembly (DISA), that is, the deprotection of hydroxyl groups of saccharides resulted in self-assembly of glycopolymers (Qi et al. J. Am. Chem. Soc. 2018, 140 (28), 8851-8857 and Su et al. ACS Macro Lett. 2014, 3 (6), 534-539). In this study, we further combined glycochemistry and self-assembly strategy by introducing glycosyltransferase as the trigger, which constructs another glycosidic bonds and another carbohydrate building blocks in situ. Herein, we propose to utilize glycosyltransferase to induce the morphology transition of glycopeptide assemblies in the process of glycosidic bonds construction, which has never been reported in literature. This strategy provides us an alternative tool to construct proteoglycan-mimicking polymeric materials and deepens our understanding on the natural process of proteoglycan construction better in the future.
Collapse
Affiliation(s)
| | | | | | - Tingting Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Bioch vcemical Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | | | | | - Juzheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Bioch vcemical Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | | |
Collapse
|
10
|
Gao C, Chen G. Exploring and Controlling the Polymorphism in Supramolecular Assemblies of Carbohydrates and Proteins. Acc Chem Res 2020; 53:740-751. [PMID: 32174104 DOI: 10.1021/acs.accounts.9b00552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In biology, polymorphism is a well-known phenomenon by which a discrete biomacromolecule can adopt multiple specific conformations in response to its environment. This term can be extended to the ability of biomacromolecules to pack into different ordered patterns. Thus, exploration and control of the polymorphism of biomacromolecules via supramolecular methods have been key steps in achieving bioinspired structures, developing bioinspired functional materials, and exploring the mechanisms of these self-assembly processes, which are models for more complex biological systems. This task could be difficult for proteins and carbohydrates due to the complicated multiple noncovalent interactions of these two species which can hardly be manipulated.In this account, dealing with the structural polymorphisms from biomacromolecular assemblies, we will first briefly comment on the problems that carbohydrate/protein assemblies are facing, and then on the basis of our long-term research on carbohydrate self-assemblies, we will summarize the new strategies that we have developed in our laboratory in recent years to explore and control the polymorphism of carbohydrate/protein assemblies.Considering the inherent ability of carbohydrates to recognize lectin, we proposed the "inducing ligand" strategy to assemble natural proteins into various nanostructures with highly ordered packing patterns. The newly developed inducing ligand approach opened a new window for protein assembly where dual noncovalent interactions (i.e., carbohydrate-protein interactions and dimerization of rhodamine) instead of the traditionally used protein-protein interactions direct the assembly pattern of proteins. As a result, various polymorphisms of protein assemblies have been constructed by simply changing the ligand chemical structure and/or the rhodamine dimerization.Another concept that we proposed for glycopolymer self-assembly is DISA (i.e., deprotection-induced glycopolymer self-assembly). It is well known that protection-deprotection chemistry has been employed to construct complex oligosaccharide structures. However, its application in glycopolymer self-assembly has been overlooked. We initiated this new strategy with diblock copolymers. Such copolymers with a carbohydrate block having protected pendent groups exist as single chains in organic media. The self-assembly can be initiated by the deprotection of the pendent groups. The process was nicely controlled by introducing various protective groups with different deprotection rates. Later on, the DISA process has been proven practical in water and even in the cellular environment, which opens a new avenue for the development of polymeric glycomaterials.Finally, the resultant polymeric glyco-materials, as a new type of biomimetic materials, provide a nice platform for investigating the functions of glycocalyx. The glycocalyx-mimicking nanoparticles achieved unprecedent functions which exceed their carbohydrate precursors. Here, the reversion of tumor-associated macrophages induced by glycocalyx-mimicking nanoparticles will be discussed with potential applications in cancer immunotherapy, where such a reversion effect could be combined with other methods (e.g., tumor checkpoint blockade).
Collapse
Affiliation(s)
- Chendi Gao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
11
|
Seifried BM, Qi W, Yang YJ, Mai DJ, Puryear WB, Runstadler JA, Chen G, Olsen BD. Glycoprotein Mimics with Tunable Functionalization through Global Amino Acid Substitution and Copper Click Chemistry. Bioconjug Chem 2020; 31:554-566. [PMID: 32078297 DOI: 10.1021/acs.bioconjchem.9b00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.
Collapse
Affiliation(s)
- Brian M Seifried
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenjing Qi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| |
Collapse
|
12
|
Howe DH, Jenewein KJ, Hart JL, Taheri ML, Magenau AJD. Functionalization-induced self-assembly under ambient conditions via thiol-epoxide “click” chemistry. Polym Chem 2020. [DOI: 10.1039/c9py01144g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer micelles were formed using thiol-epoxide “click” chemistry to trigger functionalization-induced self-assembly (FISA) of block copolymers by modifying a reactive glycidyl methacrylate block with solvophobes.
Collapse
Affiliation(s)
- David H. Howe
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Ken J. Jenewein
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - James L. Hart
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Mitra L. Taheri
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Andrew J. D. Magenau
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| |
Collapse
|
13
|
Hendrikse SS, Su L, Hogervorst TP, Lafleur RPM, Lou X, van der Marel GA, Codee JDC, Meijer EW. Elucidating the Ordering in Self-Assembled Glycocalyx Mimicking Supramolecular Copolymers in Water. J Am Chem Soc 2019; 141:13877-13886. [PMID: 31387351 PMCID: PMC6733156 DOI: 10.1021/jacs.9b06607] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 01/06/2023]
Abstract
Polysaccharides present in the glycocalyx and extracellular matrix are highly important for a multitude of functions. Oligo- and polysaccharides-based biomaterials are being developed to mimic the glycocalyx, but the spatial functionalization of these polysaccharides represents a major challenge. In this paper, a series of benzene-1,3,5-tricarboxamide (BTA) based supramolecular monomers is designed and synthesized with mono- (BTA-β-d-glucose; BTA-Glc and BTA-α-d-mannose; BTA-Man) or disaccharides (BTA-β-d-cellobiose; BTA-Cel) at their periphery or a monosaccharide (BTA-OEG4-α-d-mannose; BTA-OEG4-Man) at the end of a tetraethylene glycol linker. These glycosylated BTAs have been used to generate supramolecular assemblies and it is shown that the nature of the carbohydrate appendage is crucial for the supramolecular (co)polymerization behavior. BTA-Glc and BTA-Man are shown to assemble into micrometers long 1D (bundled) fibers with opposite helicities, whereas BTA-Cel and BTA-OEG4-Man formed small spherical micelles. The latter two monomers are used in a copolymerization approach with BTA-Glc, BTA-Man, or ethylene glycol BTA (BTA-OEG4) to give 1D fibers with BTA-Cel or BTA-OEG4-Man incorporated. Consequently, the carbohydrate appendage influences both the assembly behavior and the internal order. Using this approach it is possible to create 1D-fibers with adjustable saccharide densities exhibiting tailored dynamic exchange profiles. Furthermore, hydrogels with tunable mechanical properties can be achieved, opening up possibilities for the development of multicomponent functional biomaterials.
Collapse
Affiliation(s)
- Simone
I. S. Hendrikse
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lu Su
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tim P. Hogervorst
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - René P. M. Lafleur
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Xianwen Lou
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Gijsbert A. van der Marel
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jeroen D. C. Codee
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
14
|
Li S, Yu Y, Liu J, Xu S, Zhang S, Li M, Zhang SXA. Reactions Coupled Self- and Co-Assembly: A Highly Dynamic Process and the Resultant Spatially Inhomogeneous Structure. Chem Asian J 2019; 14:2155-2161. [PMID: 31025817 DOI: 10.1002/asia.201900409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/25/2019] [Indexed: 11/08/2022]
Abstract
Reactions coupled self-assembly represents a step forward towards biomimetic behavior in the field of supramolecular research. Here, two pH-dependent reactions of thiol-disulfide exchange and ligand exchange were used to couple with the self-assembly of an AuI -thiolate coordination polymer consisting of two ligands. Thanks to the comparable rates between the reactions and self-assembly, the compositions of the assemblies change continuously with time, resulting in a highly dynamic assembly process and spatially inhomogeneous structure that are very common in life systems but cannot be easily obtained with one-pot artificial methods.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yang Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shujue Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shengrui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Minjie Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
15
|
Qi W, Zhang Y, Wang J, Tao G, Wu L, Kochovski Z, Gao H, Chen G, Jiang M. Deprotection-Induced Morphology Transition and Immunoactivation of Glycovesicles: A Strategy of Smart Delivery Polymersomes. J Am Chem Soc 2018; 140:8851-8857. [DOI: 10.1021/jacs.8b04731] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Qi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Yufei Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Jue Wang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Guoqing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Libin Wu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Zdravko Kochovski
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Hongjian Gao
- Department of Electron Microscopy, School of Basic Medical Science, Fudan University, Shanghai, 200032 China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Ming Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| |
Collapse
|
16
|
Wang Z, Luo T, Cao A, Sun J, Jia L, Sheng R. Morphology-Variable Aggregates Prepared from Cholesterol-Containing Amphiphilic Glycopolymers: Their Protein Recognition/Adsorption and Drug Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E136. [PMID: 29495614 PMCID: PMC5869627 DOI: 10.3390/nano8030136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022]
Abstract
In this study, a series of diblock glycopolymers, poly(6-O-methacryloyl-d-galactopyranose)-b-poly(6-cholesteryloxyhexyl methacrylate) (PMAgala-b-PMAChols), with cholesterol/galactose grafts were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and deprotection process. The glycopolymers could self-assemble into aggregates with various morphologies depending on cholesterol/galactose-containing block weight ratios, as determined by transmission electronic microscopy (TEM) and dynamic laser light scattering (DLS). In addition, the lectin (Ricinus communis agglutinin II, RCA120) recognition and bovine serum albumin (BSA) adsorption of the PMAgala-b-PMAChol aggregates were evaluated. The SK-Hep-1 tumor cell inhibition properties of the PMAgala-b-PMAChol/doxorubicin (DOX) complex aggregates were further examined in vitro. Results indicate that the PMAgala-b-PMAChol aggregates with various morphologies showed different interaction/recognition features with RCA120 and BSA. Spherical aggregates (d ≈ 92 nm) possessed the highest RCA120 recognition ability and lowest BSA protein adsorption. In addition, the DOX-loaded spherical complex aggregates exhibited a better tumor cell inhibition property than those of nanofibrous complex aggregates. The morphology-variable aggregates derived from the amphiphilic glycopolymers may serve as multifunctional biomaterials with biomolecular recognition and drug delivery features.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 200444, China.
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Lin Jia
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 200444, China.
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| |
Collapse
|
17
|
Zhao Y, Zhang Y, Wang C, Chen G, Jiang M. Role of Protecting Groups in Synthesis and Self-Assembly of Glycopolymers. Biomacromolecules 2017; 18:568-575. [DOI: 10.1021/acs.biomac.6b01716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu Zhao
- The State Key Laboratory
of Molecular Engineering of Polymers, Collaborative Innovation Center
of Genetics and Development and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Yufei Zhang
- The State Key Laboratory
of Molecular Engineering of Polymers, Collaborative Innovation Center
of Genetics and Development and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Changchun Wang
- The State Key Laboratory
of Molecular Engineering of Polymers, Collaborative Innovation Center
of Genetics and Development and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Guosong Chen
- The State Key Laboratory
of Molecular Engineering of Polymers, Collaborative Innovation Center
of Genetics and Development and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| | - Ming Jiang
- The State Key Laboratory
of Molecular Engineering of Polymers, Collaborative Innovation Center
of Genetics and Development and Department of Macromolecular Science, Fudan University, Shanghai, 200433 China
| |
Collapse
|
18
|
Obata M, Otobuchi R, Kuroyanagi T, Takahashi M, Hirohara S. Synthesis of amphiphilic block copolymer consisting of glycopolymer and poly(l-lactide) and preparation of sugar-coated polymer aggregates. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Ryota Otobuchi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Tadao Kuroyanagi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering; National Institute of Technology, Ube College; 2-14-1 Tokiwadai Ube 755-8555 Japan
| |
Collapse
|
19
|
Dunne A, Palomo JM. Efficient and green approach for the complete deprotection of O-acetylated biomolecules. RSC Adv 2016. [DOI: 10.1039/c6ra19645d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This work shows the complete O-deprotection of per-acetylated molecules catalyzed by Aspergillus niger lipase (A-ANL) under very mild conditions.
Collapse
Affiliation(s)
- Anthony Dunne
- Departamento de Biocatálisis
- Instituto de Catálisis (CSIC)
- 28049 Madrid
- Spain
| | - Jose M. Palomo
- Departamento de Biocatálisis
- Instituto de Catálisis (CSIC)
- 28049 Madrid
- Spain
| |
Collapse
|
20
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|