1
|
Osaka N, Takeda N, Adachi M, Okufuji M, Osaka R. Miscibility, Hierarchical Structures, and Enhanced Mechanical Properties of Acrylic Rubber by the Formation of a Chemically and Physically Crosslinked Partially Miscible Interpenetrating Polymer Network with Poly(vinylidene fluoride). Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Noboru Osaka
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho,
Kita-ku, Okayama700-0005, Japan
| | - Natsuko Takeda
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho,
Kita-ku, Okayama700-0005, Japan
| | - Maki Adachi
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho,
Kita-ku, Okayama700-0005, Japan
| | - Misaki Okufuji
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho,
Kita-ku, Okayama700-0005, Japan
| | - Rikuto Osaka
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho,
Kita-ku, Okayama700-0005, Japan
| |
Collapse
|
2
|
A convenient strategy to prepare supramolecular deuterated polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Tauber J, van der Gucht J, Dussi S. Stretchy and disordered: Toward understanding fracture in soft network materials via mesoscopic computer simulations. J Chem Phys 2022; 156:160901. [PMID: 35490006 DOI: 10.1063/5.0081316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Soft network materials exist in numerous forms ranging from polymer networks, such as elastomers, to fiber networks, such as collagen. In addition, in colloidal gels, an underlying network structure can be identified, and several metamaterials and textiles can be considered network materials as well. Many of these materials share a highly disordered microstructure and can undergo large deformations before damage becomes visible at the macroscopic level. Despite their widespread presence, we still lack a clear picture of how the network structure controls the fracture processes of these soft materials. In this Perspective, we will focus on progress and open questions concerning fracture at the mesoscopic scale, in which the network architecture is clearly resolved, but neither the material-specific atomistic features nor the macroscopic sample geometries are considered. We will describe concepts regarding the network elastic response that have been established in recent years and turn out to be pre-requisites to understand the fracture response. We will mostly consider simulation studies, where the influence of specific network features on the material mechanics can be cleanly assessed. Rather than focusing on specific systems, we will discuss future challenges that should be addressed to gain new fundamental insights that would be relevant across several examples of soft network materials.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
4
|
Tauber J, Rovigatti L, Dussi S, van der Gucht J. Sharing the Load: Stress Redistribution Governs Fracture of Polymer Double Networks. Macromolecules 2021; 54:8563-8574. [PMID: 34602652 PMCID: PMC8482750 DOI: 10.1021/acs.macromol.1c01275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/28/2022]
Abstract
![]()
The stress response
of polymer double networks depends not only
on the properties of the constituent networks but also on the interactions
arising between them. Here, we demonstrate, via coarse-grained simulations,
that both their global stress response and their microscopic fracture
mechanics are governed by load sharing through these internetwork
interactions. By comparing our results with affine predictions, where
stress redistribution is by definition homogeneous, we show that stress
redistribution is highly inhomogeneous. In particular, the affine
prediction overestimates the fraction of broken chains by almost an
order of magnitude. Furthermore, homogeneous stress distribution predicts
a single fracture process, while in our simulations, fracture of sacrificial
chains takes place in two steps governed by load sharing within a
network and between networks, respectively. Our results thus provide
a detailed microscopic picture of how inhomogeneous stress redistribution
after rupture of chains governs the fracture of polymer double networks.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza-Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
5
|
Chen Y, Sanoja G, Creton C. Mechanochemistry unveils stress transfer during sacrificial bond fracture of tough multiple network elastomers. Chem Sci 2021; 12:11098-11108. [PMID: 34522307 PMCID: PMC8386638 DOI: 10.1039/d1sc03352b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 01/05/2023] Open
Abstract
The molecular level transfer of stress from a stiff percolating filler to a stretchable matrix is a crucial and generic mechanism of toughening in soft materials. Yet the molecular details of how this transfer occurs have so far been experimentally unreachable. Model multiple network elastomers containing spiropyran (SP) force sensors incorporated into the stiff filler network or into the stretchable matrix network are used here to detect and investigate the mechanism of stress transfer between distinct populations of polymer strands. We find that as the filler network progressively breaks by random bond scission, there is a critical stress where cooperative bond scission occurs and the macroscopic stretch increases discontinuously by necking. Surprisingly, SP molecules reveal that even in the necked region both filler and matrix chains share the load, with roughly 90% of the SPs force-activated in the filler chains before necking still being loaded in the necked region where significant activation of the SP incorporated into the matrix chains occurs. This result, where both networks remain loaded upon necking, is qualitatively consistent with the model proposed by Brown, where holes or microcracks are formed in the stiff regions and are bridged by stretched matrix chains. Detection of merocyanine (i.e. activated SP) fluorescence by confocal microscopy shows that such microcrack formation is also active at the crack tip even for materials that do not exhibit macroscopic necking. Additionally, we demonstrate that when the ethyl acrylate monomer is replaced by hexyl methacrylate in the first network, preventing molecular connections between the two networks, the stress transmission is less efficient. This study outlines the different roles played by these multiple networks in the onset of fracture and provides molecular insights for the construction of molecular models of fracture of elastomers.
Collapse
Affiliation(s)
- Yinjun Chen
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS F-75005 Paris France
| | - Gabriel Sanoja
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS F-75005 Paris France
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS F-75005 Paris France
| |
Collapse
|
6
|
Okumura T, Takahashi R, Hagita K, King DR, Gong JP. Improving the strength and toughness of macroscale double networks by exploiting Poisson's ratio mismatch. Sci Rep 2021; 11:13280. [PMID: 34168253 PMCID: PMC8225664 DOI: 10.1038/s41598-021-92773-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
We propose a new concept that utilizes the difference in Poisson's ratio between component materials as a strengthening mechanism that increases the effectiveness of the sacrificial bond toughening mechanism in macroscale double-network (Macro-DN) materials. These Macro-DN composites consist of a macroscopic skeleton imbedded within a soft elastic matrix. We varied the Poisson's ratio of the reinforcing skeleton by introducing auxetic or honeycomb functional structures that results in Poisson's ratio mismatch between the skeleton and matrix. During uniaxial tensile experiments, high strength and toughness were achieved due to two events: (1) multiple internal bond fractures of the skeleton (like sacrificial bonds in classic DN gels) and (2) significant, biaxial deformation of the matrix imposed by the functional skeleton. The Macro-DN composite with auxetic skeleton exhibits up to 4.2 times higher stiffness and 4.4 times higher yield force than the sum of the component materials. The significant improvement in mechanical performance is correlated to the large mismatch in Poisson's ratio between component materials, and the enhancement is especially noticeable in the low-stretch regime. The strengthening mechanism reported here based on Poisson's ratio mismatch can be widely used for soft materials regardless of chemical composition and will improve the mechanical properties of elastomer and hydrogel systems.
Collapse
Affiliation(s)
- Tsuyoshi Okumura
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Riku Takahashi
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan.,NTT Basic Research Laboratories and Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, 239-8686, Japan
| | - Daniel R King
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
7
|
Ye YN, Cui K, Hong W, Li X, Yu C, Hourdet D, Nakajima T, Kurokawa T, Gong JP. Molecular mechanism of abnormally large nonsoftening deformation in a tough hydrogel. Proc Natl Acad Sci U S A 2021; 118:e2014694118. [PMID: 33782118 PMCID: PMC8040646 DOI: 10.1073/pnas.2014694118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tough soft materials usually show strain softening and inelastic deformation. Here, we study the molecular mechanism of abnormally large nonsoftening, quasi-linear but inelastic deformation in tough hydrogels made of hyperconnective physical network and linear polymers as molecular glues to the network. The interplay of hyperconnectivity of network and effective load transfer by molecular glues prevents stress concentration, which is revealed by an affine deformation of the network to the bulk deformation up to sample failure. The suppression of local stress concentration and strain amplification plays a key role in avoiding necking or strain softening and endows the gels with a unique large nonsoftening, quasi-linear but inelastic deformation.
Collapse
Affiliation(s)
- Ya Nan Ye
- Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan
| | - Kunpeng Cui
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, 001-0021 Sapporo, Japan;
| | - Wei Hong
- Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
| | - Xueyu Li
- Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan
| | - Chengtao Yu
- Graduate School of Life Science, Hokkaido University, 001-0021 Sapporo, Japan
| | - Dominique Hourdet
- Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan
- Soft Matter Science and Engineering, The City of Paris Industrial Physics and Chemistry Higher Educational Institution (ESPCI Paris), Paris Sciences et Lettres University (PSL), Sorbonne University, CNRS, 75005 Paris, France
| | - Tasuku Nakajima
- Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, 001-0021 Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, 001-0021 Sapporo, Japan
| | - Takayuki Kurokawa
- Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, 001-0021 Sapporo, Japan
| | - Jian Ping Gong
- Global Institution for Collaborative Research and Education, Hokkaido University, 001-0021 Sapporo, Japan;
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, 001-0021 Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, 001-0021 Sapporo, Japan
| |
Collapse
|
8
|
|
9
|
Tian B, Wang Z, de Campo L, Gilbert EP, Dalgliesh RM, Velichko E, van der Goot AJ, Bouwman WG. Small angle neutron scattering quantifies the hierarchical structure in fibrous calcium caseinate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Fukao K, Nakajima T, Nonoyama T, Kurokawa T, Kawai T, Gong JP. Effect of Relative Strength of Two Networks on the Internal Fracture Process of Double Network Hydrogels As Revealed by in Situ Small-Angle X-ray Scattering. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02562] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kazuki Fukao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Takahiko Kawai
- Graduate School of Engineering, Gunma University, Ota 373-0057, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
11
|
Guo H, Hong W, Kurokawa T, Matsuda T, Wu ZL, Nakajima T, Takahata M, Sun T, Rao P, Gong JP. Internal Damage Evolution in Double-Network Hydrogels Studied by Microelectrode Technique. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Honglei Guo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
| | - Wei Hong
- Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
| | - Takahiro Matsuda
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Zi Liang Wu
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | | | - Taolin Sun
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Ping Rao
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
12
|
Murai J, Nakajima T, Matsuda T, Tsunoda K, Nonoyama T, Kurokawa T, Gong JP. Tough double network elastomers reinforced by the amorphous cellulose network. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Mortensen K, Annaka M. Stretching PEO-PPO Type of Star Block Copolymer Gels: Rheology and Small-Angle Scattering. ACS Macro Lett 2018; 7:1438-1442. [PMID: 35651224 DOI: 10.1021/acsmacrolett.8b00792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cross-linked Tetronic star block copolymer gels, based on poly(ethylene oxide) and poly(propylene oxide), behave quite regular with respect to mechanical properties, but exhibits unusual absence of structural response to strain. The elastic response is linear up to more than 100% strain, with a steady-state modulus of the order of 0.01 MPa after an initial stress relaxation. Neutron and X-ray scattering experiments show a consistent but unexpected response to uniaxial strain, with no changes in characteristic molecular dimensions. Upon strain beyond about 100%, that is, when the stress-strain curve is no longer linear, structural texture appears and becomes even more pronounced upon further strain, thus, indicating alignment of the self-assembled hexagonally ordered cylindrical micelles with the cylinder-axis perpendicular to the strain. It is proposed that the main structural response to large-amplitude strain is related to a layer-dominated structure of cross-linked star molecules.
Collapse
Affiliation(s)
- Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Masahiko Annaka
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Millereau P, Ducrot E, Clough JM, Wiseman ME, Brown HR, Sijbesma RP, Creton C. Mechanics of elastomeric molecular composites. Proc Natl Acad Sci U S A 2018; 115:9110-9115. [PMID: 30154166 PMCID: PMC6140500 DOI: 10.1073/pnas.1807750115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A classic paradigm of soft and extensible polymer materials is the difficulty of combining reversible elasticity with high fracture toughness, in particular for moduli above 1 MPa. Our recent discovery of multiple network acrylic elastomers opened a pathway to obtain precisely such a combination. We show here that they can be seen as true molecular composites with a well-cross-linked network acting as a percolating filler embedded in an extensible matrix, so that the stress-strain curves of a family of molecular composite materials made with different volume fractions of the same cross-linked network can be renormalized into a master curve. For low volume fractions (<3%) of cross-linked network, we demonstrate with mechanoluminescence experiments that the elastomer undergoes a strong localized softening due to scission of covalent bonds followed by a stable necking process, a phenomenon never observed before in elastomers. The quantification of the emitted luminescence shows that the damage in the material occurs in two steps, with a first step where random bond breakage occurs in the material accompanied by a moderate level of dissipated energy and a second step where a moderate level of more localized bond scission leads to a much larger level of dissipated energy. This combined use of mechanical macroscopic testing and molecular bond scission data provides unprecedented insight on how tough soft materials can damage and fail.
Collapse
Affiliation(s)
- Pierre Millereau
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Etienne Ducrot
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Jess M Clough
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | | | - Hugh R Brown
- Australian Institute of Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia
| | - Rint P Sijbesma
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France;
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
15
|
Wang W, Zhang Z, Davris T, Liu J, Gao Y, Zhang L, Lyulin AV. Simulational insights into the mechanical response of prestretched double network filled elastomers. SOFT MATTER 2017; 13:8597-8608. [PMID: 29109996 DOI: 10.1039/c7sm01794d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper deals with molecular-dynamics simulations of the mechanical properties of prestretched double network filled elastomers. To this end, we firstly validated the accuracy of this method, and affirmed that the produced stress-strain characteristics were qualitatively consistent with Lesser's experimental results on the prestretched tri-block copolymers with a competitive double network. Secondly, we investigated the effect of the crosslinking network ratio on the mechanical properties of the prestretched double network homopolymers under uniaxial tension. We found that the prestretched double network contributes greatly to the enhanced tensile stress and ultimate strength at fracture, as well as to the lower permanent set (the residual strain) and dynamic hysteresis loss, both parallel and perpendicular to the prestretching direction. Notably, though, an anisotropic behavior was observed: in the parallel direction, both the first and the second crosslinked networks bore the external force; whereas in the perpendicular direction, only the second crosslinked network was relevantly effective. Finally, the polymer nanocomposites with a prestretched double network exhibited tensile mechanical properties similar to those of the studied homopolymers with prestretched double networks. Summing up the results, it can be concluded that the incorporation of prestretched double networks with a specified crosslinking network ratio seems to be a promising method for manipulating the mechanical properties of elastomers and their nanocomposites, as well as for introducing anisotropy in their mechanical response.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Costantino Creton
- Laboratoire
de Sciences et Ingénierie de la Matière Molle, CNRS,
ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Laboratoire
Sciences et Ingénierie de la Matière Molle, Université Pierre et Marie Curie, Sorbonne-Universités, 10 rue Vauquelin, 75005 Paris, France
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Wang R, Sing MK, Avery RK, Souza BS, Kim M, Olsen BD. Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials. Acc Chem Res 2016; 49:2786-2795. [PMID: 27993006 DOI: 10.1021/acs.accounts.6b00454] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polymer networks are widely used from commodity to biomedical materials. The space-spanning, net-like structure gives polymer networks their advantageous mechanical and dynamic properties, the most essential factor that governs their responses to external electrical, thermal, and chemical stimuli. Despite the ubiquity of applications and a century of active research on these materials, the way that chemistry and processing interact to yield the final structure and the material properties of polymer networks is not fully understood, which leads to a number of classical challenges in the physical chemistry of gels. Fundamentally, it is not yet possible to quantitatively predict the mechanical response of a polymer network based on its chemical design, limiting our ability to understand and characterize the nanostructure of gels and rationally design new materials. In this Account, we summarize our recent theoretical and experimental approaches to study the physical chemistry of polymer networks. First, our understanding of the impact of molecular defects on topology and elasticity of polymer networks is discussed. By systematically incorporating the effects of different orders of loop structure, we develop a kinetic graph theory and real elastic network theory that bridge the chemical design, the network topology, and the mechanical properties of the gel. These theories show good agreement with the recent experimental data without any fitting parameters. Next, associative polymer gel dynamics is discussed, focusing on our evolving understanding of the effect of transient bonds on the mechanical response. Using forced Rayleigh scattering (FRS), we are able to probe diffusivity across a wide range of length and time scales in gels. A superdiffusive region is observed in different associative network systems, which can be captured by a two-state kinetic model. Further, the effects of the architecture and chemistry of polymer chains on gel nanostructure are studied. By incorporating shear-thinning coiled-coil protein motifs into the midblock of a micelle-forming block copolymer, we are able to responsively adjust the gel toughness through controlling the nanostructure. Finally, we review the development of novel application-oriented materials that emerge from our enhanced understanding of gel physical chemistry, including injectable gel hemostats designed to treat internal wounds and engineered nucleoporin-like polypeptide (NLP) hydrogels that act as biologically selective filters. We believe that the fundamental physical chemistry questions articulated in this Account will provide inspiration to fully understand the design of polymer networks, a group of mysterious yet critically important materials.
Collapse
Affiliation(s)
| | | | | | - Bruno S. Souza
- Department
of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | | | | |
Collapse
|
18
|
|