1
|
High Efficiency and Low Migration Hyperbranched Silicone Contain Macrophotoinitiators for UV-Cured Transparent Coatings. Polymers (Basel) 2020; 12:polym12123005. [PMID: 33339280 PMCID: PMC7766499 DOI: 10.3390/polym12123005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
A kind of hyperbranched silicone containing macrophotoinitiators (HBSMIs) were synthesized from 2-hydroxy-2-methyl-1-phenyl propanone (HMPP) and the UV-curing behaviors of HBSMIs were investigated in UV-cured transparent polyurethane-acrylate (PUA) coatings. HBSMIs show higher UV-initiating efficiency than HMPP. The migration of HBSMIs from the UV-cured coatings can be as low as 1.7–6.0 wt%, which is obviously lower than the migration of HMPP. There is a remarkable improvement of the tensile strength of the UV-cured materials initiated by HBSMI in comparison to that of the materials prepared with the same PUA initiated by HMPP. Especially for the UV-cured materials prepared from PUA with 20 wt% 1,1,1-tris(hydroxymethyl)propane (TMP), the tensile strength and the strain at break increased from 6.81 MPa to 12.14 MPa and from 43.0% to 71.9%, respectively. The fraction of improvement for the tensile strength and the strain at break is as high as 78.9% and 67.2%, respectively. The coatings prepared with HBSMI also have better UV resistance ability than those coatings prepared with HMPP because they turn slightly yellow when they are aged by UV for about 15 min while the coating prepared with 4 wt% of HMPP will turn yellow only aged by UV for 2 min. These results suggest that preparation hyperbranched silicone containing macrophotoinitiators will be one of the good strategies to improve the curing efficiency of the UV-curing system, reduce the migration of UV initiator from cured material, improve the mechanical and UV resistance performance of UV-cured materials.
Collapse
|
2
|
Jovic K, Nitsche T, Lang C, Blinco JP, De Bruycker K, Barner-Kowollik C. Hyphenation of size-exclusion chromatography to mass spectrometry for precision polymer analysis – a tutorial review. Polym Chem 2019. [DOI: 10.1039/c9py00370c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we demonstrate how SEC-ESI-MS can be used to analyze complex polymers, a significant challenge in contemporary polymer chemistry.
Collapse
Affiliation(s)
- Kristina Jovic
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Tobias Nitsche
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christiane Lang
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kevin De Bruycker
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
3
|
Steinkoenig J, de Jongh PAJM, Haddleton DM, Goldmann AS, Barner-Kowollik C, Kempe K. Unraveling the Spontaneous Zwitterionic Copolymerization Mechanism of Cyclic Imino Ethers and Acrylic Acid. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jan Steinkoenig
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., QLD
4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - David M. Haddleton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Anja S. Goldmann
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., QLD
4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., QLD
4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kristian Kempe
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Lauer A, Steinkoenig J, Jöckle P, Kelterer AM, Unterreiner AN, Barner-Kowollik C. Installing lactone chain termini during photoinduced polymerization. Polym Chem 2018. [DOI: 10.1039/c8py00457a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We exploit the Thorpe–Ingold effect as a spontaneous end group transformation method during photo-induced polymerization of methacrylates using the functional (2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropio-phenone) species as radical photoinitiator.
Collapse
Affiliation(s)
- Andrea Lauer
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- QLD 4000, Brisbane
- Australia
| | - Jan Steinkoenig
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- QLD 4000, Brisbane
- Australia
| | - Philipp Jöckle
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- QLD 4000, Brisbane
- Australia
| | - Anne-Marie Kelterer
- Institute of Physical and Theoretical Chemistry
- NAWI Graz
- Graz University of Technology
- 8010 Graz
- Austria
| | - Andreas N. Unterreiner
- Molekulare Physikalische Chemie
- Institut für Physikalische Chemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- QLD 4000, Brisbane
- Australia
| |
Collapse
|
5
|
Lauer A, Fast DE, Steinkoenig J, Kelterer AM, Gescheidt G, Barner-Kowollik C. Wavelength-Dependent Photochemical Stability of Photoinitiator-Derived Macromolecular Chain Termini. ACS Macro Lett 2017; 6:952-958. [PMID: 35650897 DOI: 10.1021/acsmacrolett.7b00499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report the unique-and first time-wavelength-dependent investigation with strictly monochromatic light of 305-405 nm wavelength into the stability of photoinitiator-derived chain termini of poly(methyl methacrylate) using a tunable laser system fused with pulsed-laser irradiation and size exclusion chromatography hyphenated to high-resolution electrospray mass spectrometry (PLI-SEC-ESI-MS). We assess several substitution patterns of methyl groups on the common benzoyl-type radical fragment. Critically, methyl substitution in the 2- and 6-positions of the benzoyl moiety, i.e., in both ortho-positions, resulted in stable chain ends up to approximately 350 nm. The stability can be attributed to a blue-shift of the n-π* transitions (relevant for the end group reactivity) as predicted by earlier density functional theory (DFT) calculations on model species. In sharp contrast, our experiments show a far reduced stability of the end groups commencing from 400 nm onwards, when the dual ortho-methyl substitution in the benzoyl fragment is missing. Thus, we demonstrate that the substitution pattern on the phenyl ring of the benzoyl group dictates the chain end stability as a function of wavelength in excellent agreement with the quantum chemical predictions. Our study thus provides critical insights into selecting suitable photoinitiation systems for specific wavelength regimes.
Collapse
Affiliation(s)
- Andrea Lauer
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - David E. Fast
- Institute
of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Jan Steinkoenig
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anne-Marie Kelterer
- Institute
of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Georg Gescheidt
- Institute
of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Fast DE, Lauer A, Menzel JP, Kelterer AM, Gescheidt G, Barner-Kowollik C. Wavelength-Dependent Photochemistry of Oxime Ester Photoinitiators. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00089] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David E. Fast
- Institute
of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Andrea Lauer
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Jan P. Menzel
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Anne-Marie Kelterer
- Institute
of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Georg Gescheidt
- Institute
of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Fast DE, Zalibera M, Lauer A, Eibel A, Schweigert C, Kelterer AM, Spichty M, Neshchadin D, Voll D, Ernst H, Liang Y, Dietliker K, Unterreiner AN, Barner-Kowollik C, Grützmacher H, Gescheidt G. Bis(mesitoyl)phosphinic acid: photo-triggered release of metaphosphorous acid in solution. Chem Commun (Camb) 2016; 52:9917-20. [PMID: 27431207 DOI: 10.1039/c6cc05219c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a photo-triggered, two-step fragmentation mechanism generating metaphosphorous acid.
Collapse
|