1
|
Osella S, Knippenberg S. Photophysics in Biomembranes: Computational Insight into the Interaction between Lipid Bilayers and Chromophores. Acc Chem Res 2024; 57:2245-2254. [PMID: 39105728 PMCID: PMC11339915 DOI: 10.1021/acs.accounts.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
ConspectusLight is ubiquitously available to probe the structure and dynamics of biomolecules and biological tissues. Generally, this cannot be done directly with visible light, because of the absence of absorption by those biomolecules. This problem can be overcome by incorporating organic molecules (chromophores) that show an optical response in the vicinity of those biomolecules. Since those optical properties are strongly dependent on the chromophore's environment, time-resolved spectroscopic studies can provide a wealth of information on biosystems at the molecular scale in a nondestructive way. In this work, we give an overview on the multiscale computational strategy developed by us in the last eight years and prove that theoretical studies and simulations are needed to explain, guide, and predict observations in fluorescence experiments. As we challenge the accepted views on existing probes, we discover unexplored abilities that can discriminate surrounding lipid bilayers and their temperature-dependent as well as solvent-dependent properties. We focus on three archetypal chromophores: diphenylhexatriene (DPH), Laurdan, and azobenzene. Our method shows that conformational changes should not be neglected for the prototype rod-shaped molecule DPH. They determine its position and orientation in a liquid-ordered (Lo) sphingomyelin/cholesterol (SM/Chol) bilayer and are responsible for a strong differentiation of its absorption spectra and fluorescence decay times in dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) membranes, which are at room temperature in liquid-disordered (Ld) and solid-gel (So) phases, respectively. Thanks to its pronounced first excited state dipole moment, Laurdan has long been known as a solvatochromic probe. Since this molecule has however two conformers, we prove that they exhibit different properties in different lipid membrane phases. We see that the two conformers are only blocked in one phase but not in another. Supported by fluorescence anisotropy decay simulations, Laurdan can therefore be regarded as a molecular rotor. Finally, the conformational versatility of azobenzene in saturated Ld lipid bilayers is simulated, along with its photoisomerization pathways. By means of nonadiabatic QM/MM surface hopping analyses (QM/MM-SH), a dual mechanism is found with a torsional mechanism and a slow conversion for trans-to-cis. For cis-to-trans, simulations show a much higher quantum yield and a so-called "pedal-like" mechanism. The differences are related to the different potential energy surfaces as well as the interactions with the surrounding alkyl chains. When tails of increased length are attached to this probe, cis is pushed toward the polar surface, while trans is pulled toward the center of the membrane.
Collapse
Affiliation(s)
- S. Osella
- Chemical
and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - S. Knippenberg
- Theory
Lab, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
2
|
Grundy LS, Galluzzo MD, Loo WS, Fong AY, Balsara NP, Takacs CJ. Inaccessible Polarization-Induced Phase Transitions in a Block Copolymer Electrolyte: An Unconventional Mechanism for the Limiting Current. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lorena S. Grundy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael D. Galluzzo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Anthony Y. Fong
- SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Takacs
- SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- SLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United States
| |
Collapse
|
3
|
Ketkar PM, Epps TH. Nanostructured Block Polymer Electrolytes: Tailoring Self-Assembly to Unlock the Potential in Lithium-Ion Batteries. Acc Chem Res 2021; 54:4342-4353. [PMID: 34783520 DOI: 10.1021/acs.accounts.1c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusIon-containing solid block polymer (BP) electrolytes can self-assemble into microphase-separated domains to facilitate the independent optimization of ion conduction and mechanical stability; this assembly behavior has the potential to improve the functionality and safety of lithium-ion batteries over liquid electrolytes to meet future demands (e.g., large capacities and long lifetimes) in various applications. However, significant enhancements in the ionic conductivity and processability of BPs must be realized for BP-based electrolytes to become robust alternatives in commercial devices. Toward this end, the controlled modification of BP electrolytes' intra-domain (nanometer-scale) and multi-grain (micrometer-scale) structure is one viable approach; intra-domain ion transport and segmental compatibility (related to the effective Flory-Huggins parameter, χeff) can be increased by tuning the ion and monomer-segment distributions, and the morphology can be selected such that the multi-grain transport is less sensitive to grain size and orientation.To highlight the characteristics of intra-domain structure that promote efficient ion transport, this Account begins by describing the relationship between BP thermodynamics (namely, χeff and the statistical segment length, b, which is indicative of chain stiffness) and local ion concentration. These thermodynamic insights are vital because they inform the selection of synthesis and formulation variables, such as polymer and ion chemistry, polymer molecular weight and composition, and ion concentration, which boost electrolyte performance. In addition to its relationship with local ion transport, χeff is also an important factor with respect to electrolyte processability. For example, a reduced χeff can allow BP electrolytes to be processed at lower temperatures (i.e., lower energy input), with less solvent (i.e., reduced waste), and/or for shorter times (i.e., higher throughput) yet still form desired nanostructures. This Account also examines the impact of electrolyte preparation and processing on the ion transport across nanostructured grains because of grain size and orientation. As morphologies with a 3D-connected versus 2D-connected conducting phase show different sensitivities to conductivity losses that can occur because of the fabrication methods, it is necessary to account for electrolyte processing effects when probing ion transport.The intra-domain and micrometer-scale structure also can be tuned using either tapered BPs (macromolecules with modified monomer-segment composition profiles between two homogeneous blocks) or blends of BPs and homopolymers, independent of the BP molecular weight and composition, as detailed herein. The application of TBPs or BP/HP blends as ion-conducting materials leads to improved ion transport, reduced χeff, and greater availability of morphologies with 3D connectivity relative to traditional (non-tapered and unblended) BP electrolytes. This feature results from the fact that ion transport is related more closely to the monomer-segment distributions within a domain than the overall nanoscale morphology or average polymer/ion mobilities. Taken together, this Account describes how ion transport and processability are influenced by BP architecture and nanostructural features, and it provides avenues to tune nanoassemblies that can contribute to improved lithium-ion battery technologies to meet future demands.
Collapse
|
4
|
Machhi HK, Ray D, Panjabi SH, Aswal VK, Soni SS. Effect of redox active multivalent metal salts on micellization of amphiphilic block copolymer for energy storage devices via SANS, DLS and NMR. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Research on the viscous flow transition of styrene-isoprene-styrene triblock copolymer by Rheology. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Grzetic DJ, Delaney KT, Fredrickson GH. Electrostatic Manipulation of Phase Behavior in Immiscible Charged Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Douglas J. Grzetic
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Shen KH, Fan M, Hall LM. Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Shen Z, Chen QP, Xie S, Lodge TP, Siepmann JI. Effects of Electrolytes on Thermodynamics and Structure of Oligo(ethylene oxide)/Salt Solutions and Liquid–Liquid Equilibria of a Squalane/Tetraethylene Glycol Dimethyl Ether Blend. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhengyuan Shen
- Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Qile P. Chen
- Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Shuyi Xie
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - J. Ilja Siepmann
- Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
9
|
Li W, Carrillo JMY, Sumpter BG, Kumar R. Modulating Microphase Separation of Lamellae-Forming Diblock Copolymers via Ionic Junctions. ACS Macro Lett 2020; 9:1667-1673. [PMID: 35617068 DOI: 10.1021/acsmacrolett.0c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a molecular dynamics simulation study investigating the phase behavior of lamellae-forming diblock copolymers with a single ionic junction on the backbone. Our results show qualitative agreement with experimental findings regarding enhanced microphase separation with the introduction of an ionic junction at the conjunction point, while further revealing nonmonotonic changes in domain spacing and order-disorder transition as a function of the electrostatic interaction strength. This highlights the dominant roles of entropic and binding effects of counterions under weak and strong ionic correlations, respectively. The location of the ionic junction is found to effectively modulate the charge distribution and chain conformation in the ordered domains; its presence in the middle of a block promotes folding of the block, leading to a smaller domain size. These findings demonstrate the interplay of ionic coupling with steric hindrance and chain end effects, which enhances our understanding of the delicate control over the microphase domain features.
Collapse
Affiliation(s)
- Wei Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Abstract
Solid-state polymer electrolytes and high-concentration liquid electrolytes, such as water-in-salt electrolytes and ionic liquids, are emerging materials to replace the flammable organic electrolytes widely used in industrial lithium-ion batteries. Extensive efforts have been made to understand the ion transport mechanisms and optimize the ion transport properties. This perspective reviews the current understanding of the ion transport and polymer dynamics in liquid and polymer electrolytes, comparing the similarities and differences in the two types of electrolytes. Combining recent experimental and theoretical findings, we attempt to connect and explain ion transport mechanisms in different types of small-molecule and polymer electrolytes from a theoretical perspective, linking the macroscopic transport coefficients to the microscopic, molecular properties such as the solvation environment of the ions, salt concentration, solvent/polymer molecular weight, ion pairing, and correlated ion motion. We emphasize universal features in the ion transport and polymer dynamics by highlighting the relevant time and length scales. Several outstanding questions and anticipated developments for electrolyte design are discussed, including the negative transference number, control of ion transport through precision synthesis, and development of predictive multiscale modeling approaches.
Collapse
Affiliation(s)
- Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Gavrilov AA. Dissipative particle dynamics for systems with polar species: Interactions in dielectric media. J Chem Phys 2020; 152:164101. [PMID: 32357770 DOI: 10.1063/5.0002475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we develop a method for simulating polar species in the dissipative particle dynamics (DPD) method. The main idea behind the method is to treat each bead as a dumb-bell, i.e., two sub-beads kept at a fixed distance, instead of a point-like particle. The relation between the bead dipole moment and the bulk dielectric permittivity was obtained. The interaction force of single charges in polar liquid showed that the effective dielectric permittivity is somewhat smaller than that obtained for the bulk case at large separation between the charges. In order to understand the reasons behind the observed drop in the dielectric permittivity, we calculate the electric field of an isolated charge in a polar liquid; no permittivity drop is observed for this case. We can assume that the behavior observed for the force is due to the fact that the probing point is always associated with the charged bead, which is a force center, which essentially leads to a non-homogeneous density distribution around it on average; this is not the case when the field is measured. The interaction of a single charge with an interface between two liquids with different permittivities was studied after that; the model is found to correctly reproduce the "mirror image" effects. Finally, we show why it is necessary to treat the polar species in DPD explicitly by investigating the behavior of a charged colloidal particle at a liquid-liquid interface.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
12
|
Galluzzo MD, Loo WS, Wang AA, Walton A, Maslyn JA, Balsara NP. Measurement of Three Transport Coefficients and the Thermodynamic Factor in Block Copolymer Electrolytes with Different Morphologies. J Phys Chem B 2020; 124:921-935. [DOI: 10.1021/acs.jpcb.9b11066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael D. Galluzzo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Andrew A. Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Amber Walton
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Jacqueline A. Maslyn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Morris MA, Sung SH, Ketkar PM, Dura JA, Nieuwendaal RC, Epps TH. Enhanced Conductivity via Homopolymer-Rich Pathways in Block Polymer-Blended Electrolytes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Seo Y, Shen KH, Brown JR, Hall LM. Role of Solvation on Diffusion of Ions in Diblock Copolymers: Understanding the Molecular Weight Effect through Modeling. J Am Chem Soc 2019; 141:18455-18466. [PMID: 31674178 DOI: 10.1021/jacs.9b07227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Youngmi Seo
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Jonathan R. Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Grzetic DJ, Delaney KT, Fredrickson GH. Field-Theoretic Study of Salt-Induced Order and Disorder in a Polarizable Diblock Copolymer. ACS Macro Lett 2019; 8:962-967. [PMID: 35619489 DOI: 10.1021/acsmacrolett.9b00316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We study a salt-doped polarizable symmetric diblock copolymer using a recently developed field theory that self-consistently embeds dielectric response, ion solvation energies, and van der Waals (vdW) attractions via the incorporation of segment polarizabilities and fixed dipoles. This field theory is amenable to direct simulation via the complex Langevin sampling technique and, thus, requires no approximations beyond the phenomenology of the underlying molecular model. We measure the shift in the order-disorder transition (ODT) of a diblock copolymer with salt-loading in field-theoretic simulations and observe rich behavior in which solvation, dilution and charge screening effects compete to determine whether the ordered or disordered phase is stabilized. At low salt concentrations, the salt behaves as a selective solvent, localizing into the high-dielectric domains and stabilizing the ordered phase. At high salt concentrations, however, the salt localization vanishes due to charge screening effects, and the salt behaves as a nonselective solvent that screens vdW attractions and stabilizes the disordered phase.
Collapse
|
16
|
Franco AA, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P, Johansson P. Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality? Chem Rev 2019; 119:4569-4627. [PMID: 30859816 PMCID: PMC6460402 DOI: 10.1021/acs.chemrev.8b00239] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 11/30/2022]
Abstract
This review addresses concepts, approaches, tools, and outcomes of multiscale modeling used to design and optimize the current and next generation rechargeable battery cells. Different kinds of multiscale models are discussed and demystified with a particular emphasis on methodological aspects. The outcome is compared both to results of other modeling strategies as well as to the vast pool of experimental data available. Finally, the main challenges remaining and future developments are discussed.
Collapse
Affiliation(s)
- Alejandro A. Franco
- Laboratoire
de Réactivité et Chimie des Solides (LRCS), CNRS UMR
7314, Université de Picardie Jules
Verne, Hub de l’Energie,
15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, Hub de l’Energie,
15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- ALISTORE-European
Research Institute, CNRS
FR 3104, Hub de l’Energie, 15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Institut
Universitaire de France, 103 boulevard Saint Michel, 75005 Paris, France
| | - Alexis Rucci
- Laboratoire
de Réactivité et Chimie des Solides (LRCS), CNRS UMR
7314, Université de Picardie Jules
Verne, Hub de l’Energie,
15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, Hub de l’Energie,
15 Rue Baudelocque, 80039 Amiens Cedex 1, France
| | - Daniel Brandell
- ALISTORE-European
Research Institute, CNRS
FR 3104, Hub de l’Energie, 15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Department
of Chemistry − Ångström
Laboratory, Box 538, SE-75121 Uppsala, Sweden
| | - Christine Frayret
- Laboratoire
de Réactivité et Chimie des Solides (LRCS), CNRS UMR
7314, Université de Picardie Jules
Verne, Hub de l’Energie,
15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459, Hub de l’Energie,
15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- ALISTORE-European
Research Institute, CNRS
FR 3104, Hub de l’Energie, 15 Rue Baudelocque, 80039 Amiens Cedex 1, France
| | - Miran Gaberscek
- ALISTORE-European
Research Institute, CNRS
FR 3104, Hub de l’Energie, 15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Department
for Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, SI-1000 Ljubljana, Slovenia
| | - Piotr Jankowski
- ALISTORE-European
Research Institute, CNRS
FR 3104, Hub de l’Energie, 15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Department
of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrik Johansson
- ALISTORE-European
Research Institute, CNRS
FR 3104, Hub de l’Energie, 15 Rue Baudelocque, 80039 Amiens Cedex 1, France
- Department
of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
17
|
Huang H, Wu L, Xiong H, Sun H. A Transferrable Coarse-Grained Force Field for Simulations of Polyethers and Polyether Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Huang
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Huiming Xiong
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Huai Sun
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
18
|
Sethi GK, Jiang X, Chakraborty R, Loo WS, Villaluenga I, Balsara NP. Anomalous Self-Assembly and Ion Transport in Nanostructured Organic-Inorganic Solid Electrolytes. ACS Macro Lett 2018; 7:1056-1061. [PMID: 35632948 DOI: 10.1021/acsmacrolett.8b00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nanostructured solid electrolytes containing ion-conducting domains and rigid nonconducting domains are obtained by block copolymer self-assembly. Here, we report on the synthesis and characteristics of mixtures of a hybrid diblock copolymer with an organic and inorganic block: poly(ethylene oxide)-b-poly(acryloisobutyl polyhedral oligomeric silsesquioxane) (PEO-POSS) and a lithium salt. In the neat state, PEO-POSS exhibits a classical order-to-disorder transition upon heating. Dilute electrolytes exhibit a dramatic reversal; a disorder-to-order transition upon heating is obtained, indicating that the addition of salt fundamentally changes interactions between the organic and inorganic chains. At higher salt concentrations, the electrolytes primarily form a lamellar phase. Coexisting lamellae and cylinders are found at intermediate salt concentrations and high temperatures. The conductivity and shear modulus of PEO-POSS are significantly higher than that of an all-organic block copolymer electrolyte with similar molecular weight and morphology, demonstrating that organic-inorganic block copolymers provide a promising route for developing the next generation of solid electrolytes for lithium batteries.
Collapse
|
19
|
Affiliation(s)
- Kevin J. Hou
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Loo WS, Galluzzo MD, Li X, Maslyn JA, Oh HJ, Mongcopa KI, Zhu C, Wang AA, Wang X, Garetz BA, Balsara NP. Phase Behavior of Mixtures of Block Copolymers and a Lithium Salt. J Phys Chem B 2018; 122:8065-8074. [DOI: 10.1021/acs.jpcb.8b04189] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Michael D. Galluzzo
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Xiuhong Li
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jacqueline A. Maslyn
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Hee Jeung Oh
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Katrina I. Mongcopa
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | | | - Andrew A. Wang
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Xin Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Bruce A. Garetz
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| |
Collapse
|
21
|
Brown JR, Seo Y, Hall LM. Ion Correlation Effects in Salt-Doped Block Copolymers. PHYSICAL REVIEW LETTERS 2018; 120:127801. [PMID: 29694088 DOI: 10.1103/physrevlett.120.127801] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/12/2017] [Indexed: 06/08/2023]
Abstract
We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.
Collapse
Affiliation(s)
- Jonathan R Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| | - Youngmi Seo
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
22
|
Chu W, Qin J, de Pablo JJ. Ion Distribution in Microphase-Separated Copolymers with Periodic Dielectric Permittivity. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02508] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Weiwei Chu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jian Qin
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National
Laboratory, Argonne, Illinois 70439, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National
Laboratory, Argonne, Illinois 70439, United States
| |
Collapse
|
23
|
Gartner TE, Morris MA, Shelton CK, Dura JA, Epps TH. Quantifying Lithium Salt and Polymer Density Distributions in Nanostructured Ion-Conducting Block Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02600] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | | | - Joseph A. Dura
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
24
|
Seo Y, Brown JR, Hall LM. Diffusion of Selective Penetrants in Interfacially Modified Block Copolymers from Molecular Dynamics Simulations. ACS Macro Lett 2017; 6:375-380. [PMID: 35610859 DOI: 10.1021/acsmacrolett.7b00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To show the influence of the interface on structure and dynamics of microphase separated polymer systems, we study interfacially modified AB block copolymers with small molecule penetrants. The polymers have a random midblock or tapered midblock whose composition varies from pure A to pure B (or from pure B to pure A for an inverse taper) between two pure blocks of A and B. We perform simple coarse-grained molecular dynamics simulations of symmetric polymers that form lamellae. With normal tapering, both polymer and penetrant diffusion parallel to the lamellae increases as taper length increases. Inverse tapered polymers exist in different conformational states (e.g., stretched vs folded back and forth across the interface) with different dynamic behavior, leading to nonmonotonic trends in their diffusion. However, the local mixing of monomers (rather than polymer conformation) appears to be the most important factor in determining penetrant diffusion.
Collapse
Affiliation(s)
- Youngmi Seo
- William G. Lowrie Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Jonathan R. Brown
- William G. Lowrie Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department
of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|