1
|
Chai Y, Han W, Zhang Y, Du Y, Wang B, Chen M, Li N, Luo W, Zha X, Wang L, Ou L. Cellulose acetate/metal-organic framework composite beads with macroporous adsorption channels as a novel hemoadsorbent for effective virus capture. Biomater Sci 2024; 12:5091-5104. [PMID: 39219491 DOI: 10.1039/d4bm00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Due to their rapid spread, high variability, and drug-resistant strains, new viral infections are continuously emerging. A lack of effective antiviral drugs and vaccines, resulting in disease and death, has significant socioeconomic consequences. Hemoperfusion can effectively adsorb and remove toxins from the blood, thus purifying the blood and serving as an acute treatment. Therefore, the aim of this study was to construct adsorbents to selectively remove viruses from the blood to quickly treat pathogen infection. We reported on new metal-organic framework (MOF)-polymer beads based on MIL-53(Al) and cellulose acetate (CNC), which were prepared by a one-step phase inversion method and applied as a viral hemo-adsorbent for the first time. The characterization results demonstrated that MIL-53(Al) was well dispersed in the CNC matrix. The adsorption results demonstrated that the capture efficiency of the human immunodeficiency virus (HIV) could exceed 99.93%, and the corresponding infectious titer decreased by approximately 103 times in clinical application. Moreover, CNC/MIL-53 exhibited low hemolysis ratios and good anticoagulant properties. Furthermore, molecular dynamics simulations revealed that the interplay of hydrogen bonding was the governing physisorption mechanism. Overall, CNC/MIL-53 could serve as a new type of hemoperfusion adsorbent for virus removal from blood and provide a new treatment pathway to mitigate epidemics.
Collapse
Affiliation(s)
- Yamin Chai
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenyan Han
- Henan University of Chinese Medicine, Henan, 450046, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Luo
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiaoyu Zha
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Hubei, 430074, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Xue M, Deng A, Wang JN, Mi X, Lao Z, Yang Y. A Zanamivir-protein conjugate mimicking mucin for trapping influenza virion particles and inhibiting neuraminidase activity. Int J Biol Macromol 2024; 275:133564. [PMID: 38955298 DOI: 10.1016/j.ijbiomac.2024.133564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ang Deng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
3
|
Zhong M, Huang QJ, Bao YB, Wang JN, Mi X, Chang H, Yang Y. An oleanic acid decorated gold nanorod for highly efficient inhibition of hemagglutinin and visible rapid detection of the influenza virus. Eur J Med Chem 2024; 272:116469. [PMID: 38704939 DOI: 10.1016/j.ejmech.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Accurate diagnosis and effective antiviral treatments are urgently needed for the prevention and control of flu caused by influenza viruses. In this study, a novel oleanic acid (OA) functionalized gold nanorod OA-AuNP was prepared through a convenient ligand-exchange reaction. As hemagglutinin (HA) on the viral surface binds strongly to the multiple OA molecules on the surface of the nanoparticle, the prepared OA-AuNP was found to exhibit potent antiviral activity against a wide range of influenza A virus strains. Furthermore, the change in color resulting from the specific binding between HA and OA and the resultant aggregation of the OA-AuNP can be visually observed or measured by UV-vis spectra with a detection limit of 2 and 0.18 hemagglutination units (HAU), respectively, which is comparable to the commercially available influenza colloid gold rapid diagnostic kits. These findings demonstrate the potential of the OA-AuNP for the development of novel multivalent antiviral conjugates and the diagnosis of influenza virus.
Collapse
Affiliation(s)
- Ming Zhong
- Shaoguan University, Shaoguan, Guangdong Province, 512005, China
| | - Qian-Jiong Huang
- Shaoguan University, Shaoguan, Guangdong Province, 512005, China
| | - Yan-Bin Bao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Hao Chang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
4
|
Zhou J, Rong XL, Cao X, Tang Q, Liu D, Jin YH, Shi XX, Zhong M, Zhao Y, Yang Y. Assembly of Poly(ethylene glycol)ylated Oleanolic Acid on a Linear Polymer as a Pseudomucin for Influenza Virus Inhibition and Adsorption. Biomacromolecules 2022; 23:3213-3221. [PMID: 35797332 DOI: 10.1021/acs.biomac.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimicry of the mucin barrier function is an efficient strategy to counteract influenza. We report the simple aminolyzation of poly(methyl vinyl ether-alt-maleic anhydride) (PM) using amine-terminated poly(ethylene glycol)ylated oleanolic acid (OAPEG) to mimic the mucin structure and its adsorption of the influenza virus. Direct interactions between influenza hemagglutinin (HA) and the prepared macromolecule evaluated by surface plasmon resonance and isothermal titration calorimetry demonstrated that the multivalent presentation of OAPEG on PM enhanced the binding affinity to HA with a decrease in KD of approximately three orders of magnitude compared with monomeric OAPEG. Moreover, hemagglutination inhibition assay, viral growth inhibition assay, and cytopathic effect reduction assay indicated that the nonglycosylated polymer could mimic natural heavily glycosylated mucin and thus promote the attachment of the virus in a subnanomolar range. Further investigation of the antiviral effects via time-of-addition assay, dynamic light scattering experiments, and transmission electron microscopy photographs indicated that the pseudomucin could adsorb the virion particles and synergistically inhibit the early attachment and final release steps of the influenza infection cycle. These findings demonstrate the effectiveness of the macromolecule in the physical sequestration and prevention of viral infection. Notably, due to its structural similarities with mucin, the biomacropolymer also has the potential for the rational design of antiviral drugs, influenza adsorbents, or filtration materials and the construction of model systems to explore protection against other pathogenic viruses.
Collapse
Affiliation(s)
- JiaPing Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.,Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xue-Lin Rong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xuan Cao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Qi Tang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Dong Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yin-Hua Jin
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xiao-Xiao Shi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ming Zhong
- Medical College of Shaoguan University, Shaoguan, Guangdong Province 512026, China
| | - YueTao Zhao
- School of Life Sciences, Central South University, Changsha, Hunan Province 410013, China
| | - Yang Yang
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.,China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
5
|
Bello-Morales R, Andreu S, Ruiz-Carpio V, Ripa I, López-Guerrero JA. Extracellular Polymeric Substances: Still Promising Antivirals. Viruses 2022; 14:1337. [PMID: 35746808 PMCID: PMC9227104 DOI: 10.3390/v14061337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Sulfated polysaccharides and other polyanions have been promising candidates in antiviral research for decades. These substances gained attention as antivirals when they demonstrated a high inhibitory effect in vitro against human immunodeficiency virus (HIV) and other enveloped viruses. However, that initial interest was followed by wide skepticism when in vivo assays refuted the initial results. In this paper we review the use of sulfated polysaccharides, and other polyanions, in antiviral therapy, focusing on extracellular polymeric substances (EPSs). We maintain that, in spite of those early difficulties, the use of polyanions and, specifically, the use of EPSs, in antiviral therapy should be reconsidered. We base our claim in several points. First, early studies showed that the main disadvantage of sulfated polysaccharides and polyanions is their low bioavailability, but this difficulty can be overcome by the use of adequate administration strategies, such as nebulization of aerosols to gain access to respiratory airways. Second, several sulfated polysaccharides and EPSs have demonstrated to be non-toxic in animals. Finally, these macromolecules are non-specific and therefore they might be used against different variants or even different viruses.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Vicente Ruiz-Carpio
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
| | - Inés Ripa
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Edificio de Biología, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain; (S.A.); (V.R.-C.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Leong J, Shi D, Tan JPK, Yang C, Yang S, Wang Y, Ngow YS, Kng J, Balakrishnan N, Peng SQ, Yeow CS, Periaswamy B, Venkataraman S, Kwa AL, Liu X, Yao H, Yang YY. Potent Antiviral and Antimicrobial Polymers as Safe and Effective Disinfectants for the Prevention of Infections. Adv Healthc Mater 2022; 11:e2101898. [PMID: 34694749 DOI: 10.1002/adhm.202101898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 11/06/2022]
Abstract
Disinfection using effective antimicrobials is essential in preventing the spread of infectious diseases. This COVID-19 pandemic has brought the need for effective disinfectants to greater attention due to the fast transmission of SARS-CoV-2. Current active ingredients in disinfectants are small molecules that microorganisms can develop resistance against after repeated long-term use and may penetrate the skin, causing harmful side-effects. To this end, a series of membrane-disrupting polyionenes that contain quaternary ammoniums and varying hydrophobic components is synthesized. They are effective against bacteria and fungi. They are also fast acting against clinically isolated drug resistant strains of bacteria. Formulating them with thickeners and nonionic surfactants do not affect their killing efficiency. These polyionenes are also effective in preventing infections caused by nonenveloped and enveloped viruses. Their effectiveness against mouse coronavirus (i.e., mouse hepatitis virus-MHV) depends on their hydrophobicity. The polyionenes with optimal compositions inactivates MHV completely in 30 s. More importantly, the polyionenes are effective in inhibiting SARS-CoV-2 by >99.999% within 30 s. While they are effective against the microorganisms, they do not cause damage to the skin and have a high oral lethal dose. Overall, these polyionenes are promising active ingredients for disinfection and prevention of viral and microbial infections.
Collapse
Affiliation(s)
- Jiayu Leong
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Jeremy Pang Kern Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chuan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shengcai Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yeen Shian Ngow
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Jessica Kng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Nithiyaa Balakrishnan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shu Qin Peng
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Chun Siang Yeow
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Balamurugan Periaswamy
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Andrea Lay‐Hoon Kwa
- Department of Pharmacy Singapore General Hospital Outram Road Singapore 169608 Singapore
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital Zhejiang University School of Medicine 79 Qingchun Road Hangzhou 310003 China
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119288 Singapore
| |
Collapse
|
7
|
Deng C, Seidi F, Yong Q, Jin X, Li C, Zhang X, Han J, Liu Y, Huang Y, Wang Y, Yuan Z, Xiao H. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127391. [PMID: 34879581 PMCID: PMC8482584 DOI: 10.1016/j.jhazmat.2021.127391] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 05/23/2023]
Abstract
Personal protective equipment (PPE) such as face masks is vital in battling the COVID-19 crisis, but the dominant polypropylene-based PPE are lack of antiviral/antibacterial activities and environmental friendliness, and have hazardous impact on the soil and aquatic ecosystems. The work presented herein focused on developing biodegradable, antiviral, and antibacterial cellulose nonwovens (AVAB-CNWs) as a multi-functional bioprotective layer for better protection against coronavirus SARS-CoV-2 and addressing environmental concerns raised by the piling of COVID-19 related wastes. Both guanidine-based polymer and neomycin sulfate (NEO) were reactive-modified and covalently grafted onto the surface of cellulose nonwovens, thereby conferring outstanding antiviral and antibacterial activities to the nonwovens without deteriorating the microstructure and biodegradability. Through adjusting the grafting amount of active components and selecting appropriate reagents for pretreatment, the antimicrobial activity and hydrophobicity for self-cleaning of the nonwovens can be tuned. More importantly, we demonstrated for the first time that such multi-functional nonwovens are capable of inactivating SARS-CoV-2 instantly, leading to high virucidal activity (> 99.35%), which is unachievable by conventional masks used nowadays. Meanwhile, the robust breathability and biodegradability of AVAB-CNWs were well maintained. The applications of the as-prepared nonwovens as high-performance textile can be readily extended to other areas in the fight against COVID-19.
Collapse
Affiliation(s)
- Chao Deng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xing Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jingquan Han
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.
| |
Collapse
|
8
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|
9
|
Su M, Yang B, Xi M, Qiang C, Yin Z. Therapeutic effect of pH-Responsive dexamethasone prodrug nanoparticles on acute lung injury. J Drug Deliv Sci Technol 2021; 66:102738. [PMID: 36568326 PMCID: PMC9760482 DOI: 10.1016/j.jddst.2021.102738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/27/2022]
Abstract
Acute lung injury/inflammation (ALI) is usually caused by various injury factors inside and outside the lung, which can be transformed into acute respiratory distress syndrome (ARDS) in severe cases. Alveolar macrophages play a key role in the pathogenesis of ALI, which regulate inflammatory responses by secreting inflammatory mediators. Therefore, we prepared dexamethasone (DXM)/mannose co-modified branched polyethyleneimine (PEI) (DXM-PEI-mannose, DPM) prodrug nanopartcales, which could effectively target the mannose receptor (MR) on the surface of alveolar macrophages and be used for the treatment of ALI. The DXM-PEI (DP) prodrug was obtained by linking DXM with branched PEI through Schiff base reaction. Subsequently, the pH-responsive DPM prodrug was obtained by using mannose-targeted head modification. The DPM prodrug NPs with a particle size of 115 ± 1 nm, a polydispersity index (PDI) value of 0.054 ± 0.018, and a zeta potential of 31 ± 1 mV were obtained by cross-linking. The drug loading of DPM prodrug NPs measured by the acid hydrolysis method was 51.88%, which had good serum stability and biocompatibility. By comparing the stability and property release of prodrug NPs under different pH (7.4 and 5.0) conditions, it showed that DPM prodrug NPs had certain sensitivity to the micro-acid environment. To study the targeting of mouse mononuclear macrophages, mannose-modified prodrug NPs showed significant in vitro targeting. Moreover, prodrug NPs showed good anti-inflammatory activity in vitro, which was significantly different from free drugs. In vivo biodistribution experiments also showed that it had a long-term lung targeting effect. DPM prodrug NPs also had a good therapeutic effect on ALI. In conclusion, the mannose-modified DXM prodrug NPs delivery system could specifically target lung tissues and have a good therapeutic effect, which might be useful for the treatment of lung diseases.
Collapse
Affiliation(s)
- Meiling Su
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Bowen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Cheng Qiang
- Sichuan Industrial Institute of Antibiotics, Sinopharm Group Corporation, People's Republic of China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China,Corresponding author
| |
Collapse
|
10
|
Deng C, Seidi F, Yong Q, Jin X, Li C, Zheng L, Yuan Z, Xiao H. Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic. J Adv Res 2021; 39:147-156. [PMID: 35777904 PMCID: PMC8577049 DOI: 10.1016/j.jare.2021.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 01/25/2023] Open
Abstract
Enable to instantly inactivate SARS-CoV-2 (>99.14%) and HCoV-229E (>98.83%). Excellent growth inhibition (>99.51%) towards both E. coli and S. aureus. Address the environmental concerns raised by non-biodegradable face masks. Development of safe, comfortable, and biodegradable textiles for PPE. A facile and scalable method to produce biocidal textiles for various applications.
Introduction Face masks are regarded as effective Personal Protective Equipment (PPE) during the COVID-19 pandemic. However, the dominant polypropylene (PP)-based masks are devoid of antiviral/antibacterial activities and create enormous environmental burdens after disposal. Objectives Here we report a facile and potentially scalable method to fabricate biodegradable, breathable, and biocidal cellulose nonwovens (BCNWs) to address both environmental and hygienic problems of commercially available face masks. Methods TEMPO-oxidized cellulose nonwovens are rendered antiviral/antibacterial via covalent bonding with disinfecting polyhexamethylene guanidine or neomycin sulfate through carbodiimide coupling chemistry. Results The obtained results showed that the BCNWs have virucidal rate of >99.14%, bactericidal efficiency of >99.51%, no leaching-out effect, and excellent air permeability of >1111.5 mm s−1. More importantly, the as-prepared BCNWs can inactivate SARS-CoV-2 instantly. Conclusions This strategy provides a new platform for the green fabrication of multifunctional cellulose nonwovens as scalable bio-protective layers with superior performance for various PPE in fighting COVID-19 or future pandemics. Additionally, replacing the non-biodegradable non-antimicrobial PP-based masks with the cellulose-based masks can reduce the plastic wastes and lower the greenhouse gas production from the incineration of disposed masks.
Collapse
Affiliation(s)
- Chao Deng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Zheng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
11
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Jiang X, Li Z, Young DJ, Liu M, Wu C, Wu YL, Loh XJ. Toward the prevention of coronavirus infection: what role can polymers play? MATERIALS TODAY. ADVANCES 2021; 10:100140. [PMID: 33778467 PMCID: PMC7980145 DOI: 10.1016/j.mtadv.2021.100140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 has caused a global public health crisis with high rates of infection and mortality. Treatment and prevention approaches include vaccine development, the design of small-molecule antiviral drugs, and macromolecular neutralizing antibodies. Polymers have been designed for effective virus inhibition and as antiviral drug delivery carriers. This review summarizes recent progress and provides a perspective on polymer-based approaches for the treatment and prevention of coronavirus infection. These polymer-based partners include polyanion/polycations, dendritic polymers, macromolecular prodrugs, and polymeric drug delivery systems that have the potential to significantly improve the efficacy of antiviral therapeutics.
Collapse
Affiliation(s)
- X Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Z Li
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - D J Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - M Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - C Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Y-L Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - X J Loh
- Institute of Materials Research and Engineering, A∗STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| |
Collapse
|
13
|
Su M, Hu H, Zhao X, Huang C, Yang B, Yin Z. Construction of mannose-modified polyethyleneimine-block-polycaprolactone cationic polymer micelles and its application in acute lung injury. Drug Deliv Transl Res 2021; 12:1080-1095. [PMID: 33893615 DOI: 10.1007/s13346-021-00976-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 11/30/2022]
Abstract
This study evaluated the D-mannose modified polyethyleneimine-block-polycaprolactone biomacromolecule copolymer micelles (PCL-PEI-mannose) as a targeted delivery of the glucocorticoid dexamethasone (DXM) to lung inflammation tissues and enhances the vehicle for its anti-inflammatory effects. Dexamethasone was encapsulated in the hydrophobic core of cationic polymer micelles by solvent evaporation. The polymeric micelles exhibited sustained-release within 48 h, good blood compatibility, and colloidal stability in vitro. The cellular uptake of mannose-modified micelles was higher compared with the non-modified micelles. And drug-loaded targeted micelles could inhibit the production of inflammatory factors in activated RAW264.7 cells. The distribution results indicated that drug-loaded targeted micelles highly improved the lung targeting ability, reduced the wet/dry ratio of injured lung tissue, and relieved the lung inflammation, accompanied by the decrease of inflammatory cell infiltration, myeloperoxidase activity, and inflammatory mediator levels in bronchoalveolar lavage fluid. These findings suggested that PCL-PEI-mannose delivery system could facilitate the lung-specific delivery and inhibit the inflammatory response. Collectively, PCL-PEI-mannose polymer micelles could be used as a potential delivery system for the treatment of acute lung injury (ALI).
Collapse
Affiliation(s)
- Meiling Su
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Heping Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuan Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengyuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Bowen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Yu Y, Zhou JP, Jin YH, Wang X, Shi XX, Yu P, Zhong M, Yang Y. Guanidinothiosialoside-Human Serum Albumin Conjugate Mimics mucin Barrier to Restrict Influenza Infection. Int J Biol Macromol 2020; 162:84-91. [PMID: 32522538 DOI: 10.1016/j.ijbiomac.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
A guanidinothiosialoside-human serum albumin conjugate as mucin mimic was prepared via a copper-free click reaction. Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) indicated that three sialoside groups were grafted onto the protein backbone. The synthetic glycoconjugate exhibited strong influenza virion capture and trapping capability. Further mechanistic studies showed that this neomucin bound tightly to neuraminidase on the surface of influenza virus with a dissociation constant (KD) in the nanomolar range and had potent antiviral activity against a broad spectrum of virus strains. Most notably, the glycoconjugate acted as a biobarrier was able to protect Madin-Darby canine kidney (MDCK) cells from influenza viral infection with 50% effective concentrations (EC50) in the nanomolar range and showed no cytotoxicity towards Human Umbilical Vein Endothelial Cells (HUVEC) at high concentrations. This research establishes an attractive strategy for the development of new multivalent antiviral agents based on mucin structure. Moreover, the method for the functionalization of the natural biological macromolecular scaffold with bioactive small molecules also lays the experimental foundation for potential biomedical and biomaterial applications.
Collapse
Affiliation(s)
- Yao Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Jia-Ping Zhou
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yin-Hua Jin
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Xue Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Xiao-Xiao Shi
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China.
| | - Ming Zhong
- Medical College, Shaoguan University, Shaoguan 512026, Guangdong Province, China.
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China.
| |
Collapse
|
15
|
Jarach N, Dodiuk H, Kenig S. Polymers in the Medical Antiviral Front-Line. Polymers (Basel) 2020; 12:E1727. [PMID: 32752109 PMCID: PMC7464166 DOI: 10.3390/polym12081727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Antiviral polymers are part of a major campaign led by the scientific community in recent years. Facing this most demanding of campaigns, two main approaches have been undertaken by scientists. First, the classic approach involves the development of relatively small molecules having antiviral properties to serve as drugs. The other approach involves searching for polymers with antiviral properties to be used as prescription medications or viral spread prevention measures. This second approach took two distinct directions. The first, using polymers as antiviral drug-delivery systems, taking advantage of their biodegradable properties. The second, using polymers with antiviral properties for on-contact virus elimination, which will be the focus of this review. Anti-viral polymers are obtained by either the addition of small antiviral molecules (such as metal ions) to obtain ion-containing polymers with antiviral properties or the use of polymers composed of an organic backbone and electrically charged moieties like polyanions, such as carboxylate containing polymers, or polycations such as quaternary ammonium containing polymers. Other approaches include moieties hybridized by sulphates, carboxylic acids, or amines and/or combining repeating units with a similar chemical structure to common antiviral drugs. Furthermore, elevated temperatures appear to increase the anti-viral effect of ions and other functional moieties.
Collapse
Affiliation(s)
| | | | - Samuel Kenig
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar College of Engineering and Design, Raman-Gan 52562, Israel; (N.J.); (H.D.)
| |
Collapse
|
16
|
Hybrid Antibacterial and Electro-conductive Coating for Textiles Based on Cationic Conjugated Polymer. Polymers (Basel) 2020; 12:polym12071517. [PMID: 32650512 PMCID: PMC7407370 DOI: 10.3390/polym12071517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
The development of efficient synthetic strategies for incorporating antibacterial coatings into textiles for pharma and medical applications is of great interest. This paper describes the preparation of functional nonwoven fabrics coated with polyaniline (PANI) via in situ polymerization of aniline in aqueous solution. The effect of three different monomer concentrations on the level of polyaniline coating on the fibers comprising the fabrics, and its electrical resistivities and antibacterial attributes, were studied. Experimental results indicated that weight gains of 0.7 and 3.0 mg/cm2 of PANI were achieved. These levels of coatings led to the reduction of both volume and surface resistivities by several orders of magnitude for PANI-coated polyester-viscose fabrics, i.e., from 108 to 105 (Ω/cm) and from 109 to 105 Ω/square, respectively. Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM) confirmed the incorporation of PANI coating with an average thickness of 0.4–1.5 µm, while Thermogravimetric Analysis (TGA) demonstrated the preservation of the thermal stability of the pristine fabrics. The unique molecular structure of PANI, consisting of quaternary ammonium ions under acidic conditions, yielded an antibacterial effect in the modified fabrics. The results revealed that all types of PANI-coated fabrics totally killed S. aureus bacteria, while PANI-coated viscose fabrics also demonstrated 100% elimination of S. epidermidis bacteria. In addition, PANI-coated, PET-viscose and PET fabrics showed 2.5 log and 5.5 log reductions against S. epidermidis, respectively.
Collapse
|
17
|
Yang G, Zhou L. Glucose Conversions Catalyzed by Zeolite Sn-BEA: Synergy among Na+ Exchange, Solvent, and Proximal Silanol Nest as Well as Critical Specifics for Catalytic Mechanisms. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
- Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Lijun Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Schandock F, Riber CF, Röcker A, Müller JA, Harms M, Gajda P, Zuwala K, Andersen AHF, Løvschall KB, Tolstrup M, Kreppel F, Münch J, Zelikin AN. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv Healthc Mater 2017; 6. [PMID: 28945945 PMCID: PMC7161897 DOI: 10.1002/adhm.201700748] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/07/2017] [Indexed: 01/08/2023]
Abstract
Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad‐spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure–activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad‐spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer‐based antivirals and represent promising candidates for further development as preventive microbicides.
Collapse
Affiliation(s)
- Franziska Schandock
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | | | - Annika Röcker
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Janis A. Müller
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Mirja Harms
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Paulina Gajda
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Kaja Zuwala
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Anna H. F. Andersen
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | | | - Martin Tolstrup
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Florian Kreppel
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Jan Münch
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Alexander N. Zelikin
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Centre; Aarhus University; Aarhus 8000 Denmark
| |
Collapse
|
19
|
Yang Y, He HJ, Chang H, Yu Y, Yang MB, He Y, Fan ZC, Iyer SS, Yu P. Multivalent oleanolic acid human serum albumin conjugate as nonglycosylated neomucin for influenza virus capture and entry inhibition. Eur J Med Chem 2017; 143:1723-1731. [PMID: 29146135 DOI: 10.1016/j.ejmech.2017.10.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
Abstract
We report the synthesis of multivalent oleanolic acid (OA) protein conjugates as nonglycosylated neomucin mimic for the capture and entry inhibition of influenza viruses. Oleanolic acid derivatives bearing an amine-terminated linker were synthesized by esterification of carboxylic acid and further grafted onto the human serum albumin (HSA) via diethyl squarate method. The binding of hemagglutinin (HA) on the virion surface to the synthetic neomucin was evaluated by hemagglutination inhibition assay. The influenza virus capture ability of the PEGylated OA-HSA conjugate was further investigated by Dynamic Light Scattering (DLS), virus capture assay and Isothermal Titration Calorimeter (ITC) techniques. The pronounced agglutination of viral particles, the high capture efficiency and affinity constant indicate that this neoprotein is comparable to natural glycosylated mucin, suggesting that this material could potentially be used as anti-infective barriers to prevent virus from invading host cells. The study also rationalizes the feasibility of antiviral drug development based on OA or other antiviral small molecules conjugated protein strategies.
Collapse
Affiliation(s)
- Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao-Jie He
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Chang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yao Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mei-Bing Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yun He
- Research Center for Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Nanshan District, Shenzhen 518057, China
| | - Zhen-Chuan Fan
- Key Laboratory of Food Nutrition and Safety of Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Suri S Iyer
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
20
|
Tan JPK, Coady DJ, Sardon H, Yuen A, Gao S, Lim SW, Liang ZC, Tan EW, Venkataraman S, Engler AC, Fevre M, Ono R, Yang YY, Hedrick JL. Broad Spectrum Macromolecular Antimicrobials with Biofilm Disruption Capability and In Vivo Efficacy. Adv Healthc Mater 2017; 6. [PMID: 28504348 DOI: 10.1002/adhm.201601420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Indexed: 12/28/2022]
Abstract
In this study, antimicrobial polymers are synthesized by the organocatalytic ring-opening polymerization of an eight-membered heterocyclic carbonate monomer that is subsequently quaternized with methyl iodide. These polymers demonstrate activity against clinically relevant Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans with fast killing kinetics. Importantly, the polymer efficiently inhibits biofilm growth and lyses existing biofilm, leading to a reduction in biomass and cell viability. In addition, the macromolecular antimicrobial is less likely to induce resistance as it acts via a membrane-lytic mechanism. The polymer is not cytotoxic toward mammalian cells with LD50 of 99.0 ± 11.6 mg kg-1 in mice through i.v. injection. In an S. aureus blood stream infection mouse model, the polymer removes bacteria from the blood more rapidly than the antibiotic Augmentin. At the effective dose, the polymer treatment does not damage liver and kidney tissues or functions. In addition, blood electrolyte balance remains unchanged after the treatment. The low cost of starting materials, ease of synthesis, nontoxicity, broad spectrum activity with fast killing kinetics, and in vivo antimicrobial activity make these macromolecular antimicrobials ideal candidates for prevention of sepsis and treatment of infections.
Collapse
Affiliation(s)
- Jeremy P. K. Tan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Daniel J. Coady
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Haritz Sardon
- POLYMAT; University of the Basque Country UPV/EHU Joxe Mari Korta Center; Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science; E-48011 Bilbao Spain
| | - Alexander Yuen
- POLYMAT; University of the Basque Country UPV/EHU Joxe Mari Korta Center; Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Shaun W. Lim
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Eddy W. Tan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Amanda C. Engler
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Mareva Fevre
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Robert Ono
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - James L. Hedrick
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| |
Collapse
|
21
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
22
|
|