1
|
Su N, Chen B, Ding J. Two Birds with One Stone: Polymerized Thermally Activated Delayed Fluorescence Small Molecules. Chemistry 2024; 30:e202304095. [PMID: 38246880 DOI: 10.1002/chem.202304095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Thermally activated delayed fluorescence (TADF) polymers show a great potential in low-cost, large-area and flexible full-color flat-panel displays. One of the most promising design rules is based on TADF+Linker, where a small molecular TADF unit is bonded to each other by a simple linker. Unlike the expensive vacuum deposition for small molecules, these polymerized TADF small molecules (Poly-TADF-SMs) are capable of cost-effective solution processing. Meanwhile, the good luminescent property of small molecular TADF emitters can be well inherited by Poly-TADF-SMs so as to bridge the efficiency gap between small molecules and polymers. Herein, we will highlight the recent progress of Poly-TADF-SMs, together with emphasis on their molecular design, photophysical and electroluminescence properties.
Collapse
Affiliation(s)
- Ning Su
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Bitian Chen
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| |
Collapse
|
2
|
Zhou T, Zhang W, Cao Q, Zhang K, Ban X, Pei M, Wang J. Unveiling the In Situ and Solvent Polymerization Engineering for Highly Efficient and Flexible Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37197999 DOI: 10.1021/acsami.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Thermally activated delayed fluorescence (TADF) polymer has great potential for the construction of flexible solution-processed organic light-emitting diodes (OLEDs). However, the relationship between polymerization engineering and device functions has rarely been reported. Here, two novel TADF polymers, P-Ph4CzCN and P-Ph5CzCN, with a small energy gap between the first excited singlet and triplet states (ΔEST; <0.16 eV) were newly developed by both solvent and in situ polymerization of a styrene component. Detailed device performance testing indicates that both polymerization strategies ensure that the TADF polymer achieves comparable high efficiencies in commonly rigid devices, and the maximum external quantum efficiencies (EQEmax) were 11.9%, 14.1%, and 16.2% for blue, green, and white OLEDs, respectively. Although in situ polymerization provides a simplified device fabrication process, which avoids the complicated synthesis and purification of the polymer, the inevitable high-temperature annealing makes it fail in a plastic substrate device. In contrast, P-Ph5CzCN achieved by solvent polymerization enables the successful fabrication of a flexible device on a poly(ethylene terephthalate) (PET) substrate, which was the first reported flexible OLED based on a TADF polymer. This work provides a strong guideline for the simple fabrication of TADF polymer devices and the application of TADF polymer materials in OLED flexible panels and flexible lighting.
Collapse
Affiliation(s)
- Tao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Wenhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Qingpeng Cao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Kaizhi Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Ming Pei
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jiayi Wang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| |
Collapse
|
3
|
Liu S, Tian Y, Yan L, Wang S, Zhao L, Tian H, Ding J, Wang L. Color Tuning in Thermally Activated Delayed Fluorescence Polymers with Carbazole and Tetramethylphenylene Backbone. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shen Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yiting Tian
- School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Libing Yan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Liu T, Deng C, Duan K, Tsuboi T, Niu S, Wang D, Zhang Q. Zero-Zero Energy-Dominated Degradation in Blue Organic Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22332-22340. [PMID: 35511443 DOI: 10.1021/acsami.2c02623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Blue-emitting organic light-emitting diodes (OLEDs) fall significantly behind other OLEDs in operational stability. To better understand the key factors governing the stability of blue OLEDs employing thermally activated delayed fluorescence (TADF), nine efficient sky-blue to green TADF emitters with different frontier orbital energy levels and different TADF lifetimes have been designed and synthesized on the basis of charge-transfer (CT) acridine/phenyltriazine derivatives. Among them, ToDMAC-TRZ, a molecule composed of a 9,9-dimethyl-2,7-di-o-tolyl-9,10-dihydroacridine donor and a 2,4,6-triphenyl-1,3,5-triazine acceptor, shows a quantum yield of nearly 1 and a TADF lifetime as short as 0.59 μs in thin film. However, the stability of OLEDs is independent of the frontier orbital energy levels and TADF lifetime of the emitter. In contrast, the device half-life is found to decrease by five-sixths as the 0-0 energy of the singlet excitons increases by about 0.06 eV, which can be well-explained by the Arrhenius equation employing a photoreaction model. Whether in photoluminescence or electroluminescence, the contribution of long-lifetime triplet excitons to degradation is much lower than expected, which can be accounted for by how the solid-state solvation effect reduces the energy of the 3CT state and how most molecules have a low-lying locally excited triplet state.
Collapse
Affiliation(s)
- Tiangeng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Taiju Tsuboi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sheng Niu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical-Dendronized TADF Emitters for Efficient Non-doped Solution-Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022; 61:e202115140. [PMID: 34870886 PMCID: PMC9306820 DOI: 10.1002/anie.202115140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully-conjugated or fully-nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical "half-dendronized" and "half-dendronized-half-encapsulated" emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge-transfer state, assuring a solely thermal equilibrium route for an effective spin-flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non-doped solution-processed devices reach a high external quantum efficiency (EQEmax ) of 24.0 % (65.9 cd A-1 , 59.2 lm W-1 ) with CIE coordinates of (0.24, 0.45) with a low efficiency roll-off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m-2 .
Collapse
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Cheng Zeng
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | | | - Zhongjie Ren
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Martin R. Bryce
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
6
|
Hu J, Chang Y, Chen F, Yang Q, Shao S, Wang L. Design, synthesis, and properties of
polystyrene‐based through‐space
charge transfer polymers: Effect of triplet energy level of electron donor moiety on delayed fluorescence and electroluminescence performance. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Fan Chen
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| |
Collapse
|
7
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Cheng Zeng
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Fernando B. Dias
- Physics Department Durham University South Road Durham DH1 3LE UK
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Martin R. Bryce
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| |
Collapse
|
8
|
Luo Y, Zhao B, Zhang B, Lan Y, Chen L, Zhang Y, Bao Y, Niu L. A scaffold of thermally activated delayed fluorescent polymer dots towards aqueous electrochemiluminescence and biosensing applications. Analyst 2022; 147:2442-2451. [DOI: 10.1039/d2an00352j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thermally activated delayed fluorescent (TADF) polymer dots were prepared, which enables aqueous electrochemiluminescence of TADF polymer emitters and its biosensor application for the first time.
Collapse
Affiliation(s)
- Yelin Luo
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Bolin Zhao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Baohua Zhang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yeying Lan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lijuan Chen
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuwei Zhang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Khammultri P, Chasing P, Chitpakdee C, Namuangruk S, Sudyoadsuk T, Promarak V. Red to orange thermally activated delayed fluorescence polymers based on 2-(4-(diphenylamino)-phenyl)-9 H-thioxanthen-9-one-10,10-dioxide for efficient solution-processed OLEDs. RSC Adv 2021; 11:24794-24806. [PMID: 35481012 PMCID: PMC9037026 DOI: 10.1039/d1ra04599g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Most highly efficient thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs) are multi-layer devices fabricated by thermal vacuum evaporation techniques, which are unfavorable for real applications. However, there are only a few reported examples of efficient solution-processed TADF OLEDs, in particular TADF polymer OLEDs. Herein, a series of solution-processable TADF conjugated polymers (PCTXO/PCTXO-Fx (x = 25, 50 and 75)) were designed and synthesized by copolymerization of 2-(4-(diphenylamino)-phenyl)-9H-thioxanthen-9-one-10,10-dioxide (TXO-TPA) as a red/orange emissive TADF unit, 9,9'-((fluorene-9,9-diyl)-bis(octane-8,1-diyl))-bis(3,6-di-tert-butylcarbazole) as host/hole-transporting unit and 2,7-N-(heptadecan-9-yl)carbazole as a conjugated linker and solubilizing group. They possessed a conjugated backbone with donor TPA-carbazole/fluorene moieties and a pendent acceptor 9H-thioxanthen-9-one-10,10-dioxide (TXO) forming a twisted donor-acceptor structure. These polymers in neat films displayed red/orange color emissions (601-655 nm) with TADF properties, proved by theory calculations and transient PL decay measurements. Their hole-transporting capability was improved when the content of 9,9'-((fluorene-9,9-diyl)-bis(octane-8,1-diyl))-bis(3,6-di-tert-butylcarbazole) within the polymers increased. All polymers were successfully employed as emitters in solution-processed OLEDs. In particular, the doped OLED fabricated with PCTXO exhibited an intense deep orange emission at 603 nm with the best electroluminescence performance (a maximum external quantum efficiency 10.44%, a maximum current efficiency of 14.97 cd A-1 and a turn-on voltage of 4.2 V).
Collapse
Affiliation(s)
- Praetip Khammultri
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Pongsakorn Chasing
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Chirawat Chitpakdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Taweesak Sudyoadsuk
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Vinich Promarak
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| |
Collapse
|
10
|
Li X, Rao J, Yang L, Zhao L, Wang S, Tian H, Ding J, Wang L. Donor–Acceptor Conjugated Polymers with Efficient Thermally Activated Delayed Fluorescence: Random versus Alternative Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xue Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jiancheng Rao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
11
|
Triphenylamine-carbazole alternating copolymers bearing thermally activated delayed fluorescent emitting and host pendant groups for solution-processable OLEDs. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zeng Z, Huang P, Kong Y, Tong L, Zhang B, Luo Y, Chen L, Zhang Y, Han D, Niu L. Nanoencapsulation strategy: enabling electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters in aqueous media. Chem Commun (Camb) 2021; 57:5262-5265. [PMID: 34008623 DOI: 10.1039/d1cc01705e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanoencapsulation strategy is introduced to a state-of-the-art thermally activated delayed fluorescence (TADF) molecule, i.e. 4CzIPN, which ensures the achievement of air-stable, water-soluble TADF nanoparticles featuring efficient TADF property without an unsatisfactory oxygen quenching effect. Accordingly, we report here for the first time the electrochemiluminescence of TADF emitters in aqueous media.
Collapse
Affiliation(s)
- Zihui Zeng
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Ping Huang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yi Kong
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Lianpeng Tong
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Baohua Zhang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yelin Luo
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Lijuan Chen
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yuwei Zhang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Dongxue Han
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Li Niu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| |
Collapse
|
13
|
Huang P, Zhang B, Hu Q, Zhao B, Zhu Y, Zhang Y, Kong Y, Zeng Z, Bao Y, Wang W, Cheng Y, Niu L. Polymer Electrochemiluminescence Featuring Thermally Activated Delayed Fluorescence. Chemphyschem 2021; 22:726-732. [PMID: 33624418 DOI: 10.1002/cphc.202100076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/22/2021] [Indexed: 01/27/2023]
Abstract
Electrochemiluminescence (ECL) based on conjugated polymers or oligomers is persistently being pursued owing to its huge application scope ranging from ultra-sensitive bioanalysis to ultra-resolution imaging and spectroscopy. Because of the theoretical limit in radiative exciton generation yield (typically ∼25 %) of those polymers or oligomers, the corresponding ECL efficiency is still limited, which hampers its ECL performance and its related applications. Herein, we report ECL based on a thermally activated delayed fluorescence (TADF) polymer scaffold, which is characteristic of all-exciton harvesting in the ECL process, and thus potentially capable of achieving ∼100 % ECL efficiency. These desired properties of the TADF polymer ECL is attributed to a fast and efficient up-conversion process from non-radiative triplet to radiative singlet states under thermal activation, which is absent in conventional fluorescent polymers/oligomers, such as F8BT. In this study, various ECL modes, including annihilation or co-reactant mode using TPrA or S2 O8 2- as co-reactant, are confirmed for our model TADF polymer ECL system, which was different from fluorescent polymer ECL counterpart. Furthermore, solid-state ECL sensing on L-cysteine (an important marker of disease) is also evaluated by using the model TADF polymer. Ultralow detection limit in combination with high sensitivity and good specificity are achieved for this model system, indicative of a high potential of the TADF polymer scaffold for applications in the broad field of ECL.
Collapse
Affiliation(s)
- Ping Huang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Baohua Zhang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Qiong Hu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Bolin Zhao
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yunhui Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Yuwei Zhang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yi Kong
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zihui Zeng
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yu Bao
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wei Wang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Li Niu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
14
|
Chen T, Chen Z, Ni F, Xie G, Yang C. Sky-blue thermally activated delayed fluorescence polymers by using a conjugation-confined poly(aryl ether) main chain. Polym Chem 2021. [DOI: 10.1039/d1py00170a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of sky-blue TADF polymers were developed by applying a bipolar poly(aryl ether) main chain, and solution-processed OLEDs with these polymers doped into the host DMAC-DP-CZ showed high external quantum efficiencies of up to 14.5%.
Collapse
Affiliation(s)
- Tianheng Chen
- Department of Chemistry
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Wuhan University
- Wuhan
| | - Zhanxiang Chen
- Department of Chemistry
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Wuhan University
- Wuhan
| | - Fan Ni
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Guohua Xie
- Department of Chemistry
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Wuhan University
- Wuhan
| | - Chuluo Yang
- Department of Chemistry
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Wuhan University
- Wuhan
| |
Collapse
|
15
|
Khammultri P, Kitisriworaphan W, Chasing P, Namuangruk S, Sudyoadsuk T, Promarak V. Efficient white light-emitting polymers from dual thermally activated delayed fluorescence chromophores for non-doped solution processed white electroluminescent devices. Polym Chem 2021. [DOI: 10.1039/d0py01541e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conjugated TADF copolymers comprised of two TADF molecules linked with carbazole exhibited stable pure white emission from non-doped OLEDs with CIE coordinates (0.32, 0.35), a maximum luminance efficiency of 9.13 cd A−1, and a maximum EQE of 4.17%.
Collapse
Affiliation(s)
- Praetip Khammultri
- Department of Materials Science and Engineering
- School of Molecular Science & Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
| | - Wipaporn Kitisriworaphan
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering
- School of Molecular Science & Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency
- Pathum Thani
- Thailand
| | - Taweesak Sudyoadsuk
- Department of Materials Science and Engineering
- School of Molecular Science & Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering
- School of Molecular Science & Engineering
- Vidyasirimedhi Institute of Science and Technology
- Wangchan
- Thailand
| |
Collapse
|
16
|
Rao J, Yang L, Li X, Zhao L, Wang S, Ding J, Wang L. Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donor‐Acceptor Conjugated Polymers. Angew Chem Int Ed Engl 2020; 59:17903-17909. [DOI: 10.1002/anie.202006034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/24/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Jiancheng Rao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xuefei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
17
|
Rao J, Yang L, Li X, Zhao L, Wang S, Ding J, Wang L. Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donor‐Acceptor Conjugated Polymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiancheng Rao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xuefei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
18
|
Yin X, He Y, Wang X, Wu Z, Pang E, Xu J, Wang JA. Recent Advances in Thermally Activated Delayed Fluorescent Polymer-Molecular Designing Strategies. Front Chem 2020; 8:725. [PMID: 32923428 PMCID: PMC7457026 DOI: 10.3389/fchem.2020.00725] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 11/25/2022] Open
Abstract
Thermally activated delayed fluorescent (TADF) materials, as the third generation of organic electroluminescent materials, have many advantages over other organic light-emitting diodes (OLEDs) materials, such as 100% internal quantum efficiency, no doping of heavy metals, and avoiding the shortages of ordinary fluorescent materials and phosphorescent materials. So it is considered to be the most competitive organic light-emitting materials, and has great application prospects in the field of OLEDs. So far, small-molecule TADF materials have achieved high quantum yield and full-color range of red, green, and blue. However, TADF polymers suitable for low-cost and easily scalable solution processing are less developed, which are confined by the preparation methods and polymers designing, and there are still challenges of increasing quantum efficiency and strengthening device performance. This review mainly summarizes different synthesis strategies of TADF polymers and the latest development in the field. Special attention is focused on illustrating the designing and structure-property relationship of TADF polymers, and finally, an outlook is given for the design and application prospect of TADF polymers in the future.
Collapse
Affiliation(s)
- Xia Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Ying He
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Xu Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Zexin Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Erbao Pang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Jing Xu
- Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Jun-An Wang
- Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
19
|
Li S, Deng Q, Zhang Y, Li X, Wen G, Cui X, Wan Y, Huang Y, Chen J, Liu Z, Wang L, Lee CS. Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIR-II Biowindow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001146. [PMID: 32627868 DOI: 10.1002/adma.202001146] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Indexed: 05/05/2023]
Abstract
Extensive recent progress has been made on the design and applications of organic photothermal agents for biomedical applications because of their excellent biocompatibility comparing with inorganic materials. One major hurdle for the further development and applications of organic photothermal agents is the rarity of high-performance materials in the second near-infrared (NIR-II) window, which allows deep tissue penetration and causes minimized side effects. Up till now, there have been few reported NIR-II-active photothermal agents and their photothermal conversion efficiencies are relatively low. Herein, optical absorption of π-conjugated small molecules from the first NIR window to the NIR-II window is precisely regulated by molecular surgery of substituting an individual atom. With this technique, the first demonstration of a conjugated oligomer (IR-SS) with an absorption peak beyond 1000 nm is presented, and its nanoparticle achieves a record-high photothermal conversion efficiency of 77% under 1064 nm excitation. The nanoparticles show a good photoacoustic response, photothermal therapeutic efficacy, and biocompatibility in vitro and in vivo. This work develops a strategy to boost the light-harvesting efficiency in the NIR-II window for cancer theranostics, offering an important step forward in advancing the design and application of NIR-II photothermal agents.
Collapse
Affiliation(s)
- Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Jiaxiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
20
|
Zhan H, Wang Y, Li K, Chen Y, Yi X, Bai K, Xie G, Cheng Y. Saturated Red Electroluminescence From Thermally Activated Delayed Fluorescence Conjugated Polymers. Front Chem 2020; 8:332. [PMID: 32426326 PMCID: PMC7212419 DOI: 10.3389/fchem.2020.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Two sets of conjugated polymers with anthraquinone groups as pendant acceptors were designed and synthesized. The acceptor is tethered to an diphenylamine group via a phenylene bridge, constructing a thermally activated delayed fluorescence (TADF) unit, which is embedded into the polymer backbone through its donor fragment, while the backbone is composed of dibenzothiophene-S, S-dioxide and 2, 7-fluorene or 2, 7-carbazole groups. The polymers show distinct TADF characteristics, confirmed by transient photoluminescence spectra and theoretical calculations. The carbazole-based polymers exhibit shorter delay lifetimes and lower energy emission relative to the fluorene-based polymers. The non-doped organic light-emitting diodes fabricated via solution processing approach produce efficient red emissions with the wavelengths of 625-646 nm. The carbazole containing polymer with 2% molar content of the TADF unit exhibits the best maximum external quantum efficiency of 13.6% and saturated red electroluminescence with the Commission Internationale de l'Eclairage coordinates of (0.62, 0.37).
Collapse
Affiliation(s)
- Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yanjie Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Kuofei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yuannan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaohu Yi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Keyan Bai
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, China.,Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates (South China University of Technology), Guangzhou, China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
21
|
Polgar AM, Poisson J, Paisley NR, Christopherson CJ, Reyes AC, Hudson ZM. Blue to Yellow Thermally Activated Delayed Fluorescence with Quantum Yields near Unity in Acrylic Polymers Based on D−π–A Pyrimidines. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander M. Polgar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jade Poisson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nathan R. Paisley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cheyenne J. Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Annelie C. Reyes
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
22
|
Ma F, Zhao G, Zheng Y, He F, Hasrat K, Qi Z. Molecular Engineering of Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced Emission via Introducing Intramolecular Hydrogen-Bonding Interactions for Efficient Solution-Processed Nondoped OLEDs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1179-1189. [PMID: 31826613 DOI: 10.1021/acsami.9b17545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purely organic luminescent materials concurrently exhibiting thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) features are in great demand due to their high efficiency in aggregation-state toward efficient nondoped OLEDs. Herein, a class of TADF emitters adopting phenyl(pyridyl)methanone as electron-accepting segments and di(tert-butyl)carbazole and 9,9-dimethyl-9,10-dihydroacridine (or phenoxazine) as electron-donating groups are designed and synthesized. The existence of intramolecular hydrogen bonding is conducive to minish the energy difference between a singlet and a triplet (ΔEst), suppress nonradiative decay, and increase the luminescence efficiency. By using 3CPyM-DMAC as the emitter, the nondoped device via a solution process realize a high current efficiency (CE) and external quantum efficiency (EQE) of 35.4 cd A-1 and 11.4%, respectively, which is superior to that of CBM-DMAC with a CE and EQE of 14.3 cd A-1 and 6.7%. This work demonstrates a promising tactic to the establishment of TADF emitters with AIE features via introducing intramolecular hydrogen bonding.
Collapse
Affiliation(s)
- Fulong Ma
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Guimin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Yu Zheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Fangru He
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Kamran Hasrat
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , PR China
| |
Collapse
|
23
|
Jiang T, Liu Y, Ren Z, Yan S. The design, synthesis and performance of thermally activated delayed fluorescence macromolecules. Polym Chem 2020. [DOI: 10.1039/d0py00096e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The design, synthesis and performance of thermally activated delayed fluorescence macromolecules are summarized, and the typical solution-processed polymeric and dendritic emitters are also organized herein as a function of EL emission color.
Collapse
Affiliation(s)
- Tingcong Jiang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yuchao Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
- Key Laboratory of Rubber-Plastics
| |
Collapse
|
24
|
Zhou X, Huang M, Zeng X, Zhong C, Xie G, Cao X, Yang C, Yang C. Superacid-catalyzed Friedel–Crafts polyhydroxyalkylation: a straightforward method to construct sky-blue thermally activated delayed fluorescence polymers. Polym Chem 2020. [DOI: 10.1039/d0py00469c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of sky-blue TADF polymers were developed by Friedel–Crafts polyhydroxyalkylation for efficient solution processed OLEDs.
Collapse
Affiliation(s)
- Xiang Zhou
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Manli Huang
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Xuan Zeng
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Cheng Zhong
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Guohua Xie
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Xiaosong Cao
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- P.R. China
| | - Changan Yang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- P.R. China
| | - Chuluo Yang
- Renmin Hospital of Wuhan University
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| |
Collapse
|
25
|
Chen F, Hu J, Wang X, Shao S, Wang L, Jing X, Wang F. Synthesis and Electroluminescent Properties of Through-Space Charge Transfer Polymers Containing Acridan Donor and Triarylboron Acceptors. Front Chem 2019; 7:854. [PMID: 31921776 PMCID: PMC6914820 DOI: 10.3389/fchem.2019.00854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
We report the design, synthesis and electroluminescent properties of three kinds of through-space charge transfer (TSCT) polymers consisting of non-conjugated polystyrene backbone, acridan donor and triarylboron acceptors having different substituents such as hydrogen (H), fluorine (F), and trifluoromethyl (CF3). Owing to the weak electron interaction between acridan donor and triarylboron acceptor through non-conjugated connection, blue emission with peaks in range of 429–483 nm can be achieved for the polymers in solid-state film, accompanied with photoluminescence quantum yields of 26–53%. The resulting TSCT polymers exhibit small ΔEST values below 0.1 eV owing to the separated HOMO and LUMO distributions, showing thermally activated delayed fluorescence with lifetimes in range of 0.19–0.98 μs. Meanwhile, the polymers show aggregation-induced emission (AIE) effect with the emission intensity increased by up to ~33 folds from solution to aggregation state. Solution-processed organic light-emitting diodes based on the polymers containing trifluoromethyl substituent exhibit promising electroluminescent performance with maximum luminous efficiency of 20.1 cd A−1 and maximum external quantum efficiency of 7.0%, indicating that they are good candidates for development of luminescent polymers.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
26
|
Rao J, Liu X, Li X, Yang L, Zhao L, Wang S, Ding J, Wang L. Bridging Small Molecules to Conjugated Polymers: Efficient Thermally Activated Delayed Fluorescence with a Methyl‐Substituted Phenylene Linker. Angew Chem Int Ed Engl 2019; 59:1320-1326. [DOI: 10.1002/anie.201912556] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Jiancheng Rao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinrui Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xuefei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
27
|
Rao J, Liu X, Li X, Yang L, Zhao L, Wang S, Ding J, Wang L. Bridging Small Molecules to Conjugated Polymers: Efficient Thermally Activated Delayed Fluorescence with a Methyl‐Substituted Phenylene Linker. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiancheng Rao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinrui Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xuefei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
28
|
Affiliation(s)
- Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science & Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
29
|
Teaching an Old Poly(arylene ether) New Tricks: Efficient Blue Thermally Activated Delayed Fluorescence. iScience 2019; 15:147-155. [PMID: 31055216 PMCID: PMC6502736 DOI: 10.1016/j.isci.2019.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/25/2022] Open
Abstract
Polymer light-emitting diodes are attractive for optoelectronic applications owing to their brightness and ease of processing. However, often metals have to be inserted to increase the luminescence efficiency, and producing blue emitters is a challenge. Here we present a strategy to make blue thermally activated delayed fluorescence (TADF) polymers by directly embedding a small molecular blue TADF emitter into a poly(aryl ether) (PAE) backbone. Thanks to the oxygen-induced negligible electronic communication between neighboring TADF fragments, its corresponding blue delayed fluorescence can be inherited by the developed polymers. These polymers are free from metal catalyst contamination and show improved thermal stability. Through device optimization, a current efficiency of 29.7 cd/A (21.2 lm/W, 13.2%) is realized together with Commission Internationale de L'Eclairage coordinates of (0.18, 0.32). The value is competitive with blue phosphorescent polymers, highlighting the importance of the PAE backbone in achieving high-performance blue delayed fluorescence at a macromolecular level. Directly embedding a small molecular blue TADF emitter in a poly(aryl ether) backbone Oxygen-induced negligible electron communication leads to blue delayed fluorescence The achieved device efficiency is competitive with blue phosphorescent polymers
Collapse
|
30
|
Liu J, Zhou K, Wang D, Deng C, Duan K, Ai Q, Zhang Q. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate. Front Chem 2019; 7:312. [PMID: 31165054 PMCID: PMC6536661 DOI: 10.3389/fchem.2019.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023] Open
Abstract
Metal-free thermally activated delayed fluorescence (TADF) emitters have emerged as promising candidate materials for highly efficient and low-cost organic light-emitting diodes (OLEDs). Here, a novel acceptor 2-cyanopyrazine is selected for the construction of blue TADF molecules via computer-assisted molecular design. Both theoretical prediction and experimental photophysical data indicate a small S1-T1 energy gap (ΔEST) and a relative large fluorescence rate (kF) in an o-phenylene-bridged 2-cyanopyrazine/3,6-di-tert-butylcarbazole compound (TCzPZCN). The kF value of 3.7 × 107 s−1 observed in a TCzPZCN doped film is among the highest in the TADF emitters with a ΔEST smaller than 0.1 eV. Blue TADF emission is observed in a TCzPZCN doped film with a short TADF lifetime of 1.9 μs. The OLEDs using TCzPZCN as emitter exhibit a maximum external quantum efficiency (EQE) of 7.6% with low-efficiency roll-off. A sky-blue device containing a derivative of TCzPZCN achieves an improved EQE maximum of 12.2% by suppressing the non-radiative decay at T1.
Collapse
Affiliation(s)
- Junyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Keren Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Ke Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qi Ai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Liu D, Tian W, Feng Y, Zhang X, Ban X, Jiang W, Sun Y. Achieving 20% External Quantum Efficiency for Fully Solution-Processed Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Dendrimers with Flexible Chains. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16737-16748. [PMID: 30986027 DOI: 10.1021/acsami.8b22662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Actualizing high-efficiency thermally activated delayed fluorescent (TADF) organic light-emitting diodes (OLEDs) with fully wet processes is of great significance to the development of purely organic electroluminescence and the application of large-area OLED displays. Herein, new strategies are proposed to develop the TADF dendrimers with tunable colors by adjusting the way of linking branches to the core and the numbers of peripheral branches. Due to an energy gradient and efficient exciton utilization in the core-dendron system, the solution-processed OLEDs with the four dendrimers 5CzBN-O-Cz, 5CzBN-O-2Cz, 5CzBN-Cz, and 5CzBN-2Cz all give rise to low turn-on voltages and great device efficiency. Notably, 5CzBN-2Cz affords record-high fully solution-processed TADF OLEDs with external quantum efficiency of above 20%, which is significantly comparable to the efficiency of TADF OLEDs based on vacuum deposition. The work offers a guideline for designing solution-processable materials, paving the way toward practical applications of large-area fully solution-processed OLEDs.
Collapse
Affiliation(s)
- Dan Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Wenwen Tian
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yingli Feng
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xusheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xinxin Ban
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Huaihai Institute of Technology , Lianyungang , Jiangsu 222005 , China
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yueming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
32
|
Shao S, Wang S, Xu X, Yang Y, Lv J, Ding J, Wang L, Jing X, Wang F. Bipolar Poly(arylene phosphine oxide) Hosts with Widely Tunable Triplet Energy Levels for High-Efficiency Blue, Green, and Red Thermally Activated Delayed Fluorescence Polymer Light-Emitting Diodes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiushang Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Yun Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
33
|
Li C, Ren Z, Sun X, Li H, Yan S. Deep-Blue Thermally Activated Delayed Fluorescence Polymers for Nondoped Solution-Processed Organic Light-Emitting Diodes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
34
|
Yang Y, Li K, Wang C, Zhan H, Cheng Y. Effect of a Pendant Acceptor on Thermally Activated Delayed Fluorescence Properties of Conjugated Polymers with Backbone-Donor/Pendant-Acceptor Architecture. Chem Asian J 2019; 14:574-581. [PMID: 30632280 DOI: 10.1002/asia.201801813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/06/2019] [Indexed: 02/02/2023]
Abstract
Three sets of conjugated polymers with backbone-donor/pendant-acceptor architectures, named PCzA3PyB, PCzAB2Py, and PCzAB3Py, are designed and synthesized. The three isomeric benzoylpyridine-based pendant acceptor groups are 6-benzoylpyridin-3-yl (3PyB), 4-((pyridin-2-yl)carbonyl)phenyl (B2Py) and 4-((pyridin-3-yl)carbonyl)phenyl (B3Py), whereas the identical backbone consists of 3,6-carbazolyl and 2,7-acridinyl rings. One acridine ring and each acceptor group constitute a definite thermally activated delayed fluorescence (TADF) unit, incorporated into the main chain of the polymers through the 2,7-position of the acridine ring with the varied content. All of the polymers display legible TADF features with a short microsecond-scale delayed lifetime (0.56-1.62 μs) and a small singlet/triplet energy gap (0.10-0.19 eV). Progressively redshifted emissions are observed in the order PCzAB3Py, PCzA3PyB, and PCzAB2Py owing to the different substitution patterns of the pyridyl group. Photoluminescence quantum yields can be improved by regulating the molar content of the TADF unit in the range 0.5-50 %. The non-doped organic light-emitting devices (OLEDs) fabricated by solution-processing technology emit yellow-green to orange light. The polymers with 5 mol % of the TADF unit exhibit excellent comprehensive electroluminescence performance, in which PCzAB2Py5 achieves a maximum external quantum efficiency (EQE) of 11.9 %, low turn-on voltage of 3.0 V, yellow emission with a wavelength of 573 nm and slow roll-off with EQE of 11.6 % at a luminance of 1000 cd m-2 and driving voltage of 5.5 V.
Collapse
Affiliation(s)
- Yike Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Kuofei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chenxu Wang
- Public Technical Service Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, P.R. China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
35
|
Vandana T, Karuppusamy A, Arulkumar R, Venuvanalingam P, Kannan P. Resemblances of experiment and theory on aryl substituted luminogenic polypyrazolines. NEW J CHEM 2019. [DOI: 10.1039/c9nj01221d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polyarylpyrazolines (PPB, PPA, PPT, PPBt) containing various aryl substituents emit light in a broad color range from orange to blue, making them suitable for optoelectronics.
Collapse
Affiliation(s)
- T. Vandana
- Department of Chemistry
- Anna University
- Chennai
- India
| | | | - R. Arulkumar
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| | - P. Venuvanalingam
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli 620 024
- India
| | - P. Kannan
- Department of Chemistry
- Anna University
- Chennai
- India
| |
Collapse
|
36
|
Zhou X, Huang M, Zeng X, Chen T, Xie G, Yin X, Yang C. Combining the qualities of carbazole and tetraphenyl silane in a desirable main chain for thermally activated delayed fluorescence polymers. Polym Chem 2019. [DOI: 10.1039/c9py00742c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of green TADF polymers with carbazole and a tetraphenyl silane copolymer main chain were developed for use in non-doped solution processed OLEDs.
Collapse
Affiliation(s)
- Xiang Zhou
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Manli Huang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Xuan Zeng
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Tianheng Chen
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Guohua Xie
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- PR China
| | - Chuluo Yang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| |
Collapse
|
37
|
Park YH, Jang HJ, Lee JY. High efficiency above 20% in polymeric thermally activated delayed fluorescent organic light-emitting diodes by a host embedded backbone structure. Polym Chem 2019. [DOI: 10.1039/c9py00701f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A highly efficient polymeric thermally activated delayed fluorescent (TADF) organic light-emitting diode was developed by synthesizing a copolymer with 9-vinylcarbazole (VCz) and TADF repeating units.
Collapse
Affiliation(s)
- Yun Hwan Park
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Ho Jin Jang
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Jun Yeob Lee
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|
38
|
Zhang B, Cheng Y. Recent Advances in Conjugated TADF Polymer Featuring in Backbone‐Donor/Pendant‐Acceptor Structure: Material and Device Perspectives. CHEM REC 2018; 19:1624-1643. [PMID: 30511821 DOI: 10.1002/tcr.201800152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/07/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Baohua Zhang
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical EngineeringGuangzhou University, Guangzhou 510006 P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
39
|
Wei Q, Ge Z, Voit B. Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices. Macromol Rapid Commun 2018; 40:e1800570. [DOI: 10.1002/marc.201800570] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Qiang Wei
- Ningbo Institute of Materials Technology & Engineering; Chinese Academy of Sciences; Ningbo 315201 P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology & Engineering; Chinese Academy of Sciences; Ningbo 315201 P. R. China
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6, 01069 Dresden
- Organic Chemistry of Polymers and Center for Advancing Electronics Dresden; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
40
|
Yang Y, Zhu Y, Wang Y, Wang S, Zhan H, Cheng Y. Synthesis and electroluminescent performance of thermally activated delayed fluorescence-conjugated polymers with simple formylphenyl as pendant acceptor. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yike Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Yunhui Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Yanjie Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| |
Collapse
|
41
|
Liu Y, Wang Y, Li C, Ren Z, Ma D, Yan S. Efficient Thermally Activated Delayed Fluorescence Conjugated Polymeric Emitters with Tunable Nature of Excited States Regulated via Carbazole Derivatives for Solution-Processed OLEDs. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00565] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuchao Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yukun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Beijing 130022, China
- University of Chinese Academy of Sciences, Beijing 10039, China
| | - Chensen Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
Zeng X, Luo J, Zhou T, Chen T, Zhou X, Wu K, Zou Y, Xie G, Gong S, Yang C. Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02629] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xuan Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiajia Luo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Tao Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Tianheng Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiang Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kailong Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Guohua Xie
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shaolong Gong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chuluo Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| |
Collapse
|
43
|
Li C, Wang Y, Sun D, Li H, Sun X, Ma D, Ren Z, Yan S. Thermally Activated Delayed Fluorescence Pendant Copolymers with Electron- and Hole-Transporting Spacers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5731-5739. [PMID: 29360340 DOI: 10.1021/acsami.8b00136] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To study the effect of hole- and electron-transporting spacers in copolymers on the thermally activated delayed fluorescence (TADF) properties and device efficiency of copolymers, two series of copolymers PCzPT-x and POPT-x have been designed and synthesized successfully. In these copolymers, 2-(10H-phenothiazin-10-yl)dibenzothiophene-S,S-dioxide units give green-yellow TADF, while hole-transporting 9-(4-vinylphenyl)-9H-carbazole units or electron-transporting diphenyl(4-vinylphenyl)phosphine oxide act as spacers or hosts. Their thermal, electrochemical, photophysical, and electroluminescent properties and theoretical calculations are systematically investigated to illustrate the relationships between molecular structures and photophysical properties. By optimizing the upconversion and radiative decay rate and managing the energy transfer, a green-yellow device based on POPT-25 achieves a maximum external quantum efficiency of 5.2%, a current efficiency of 16.8 cd/A, and a power efficiency of 7.8 lm/W with CIE coordinates of (0.36, 0.50). Moreover, an external quantum efficiency of 3.5% at the practical luminescence of 100 cd/m2 is obtained.
Collapse
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Yukun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences , Changchun 130022, China
- University of Chinese Academy of Sciences , Beijing 10039, China
| | - Dianming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
44
|
Lin X, Zhu Y, Zhang B, Zhao X, Yao B, Cheng Y, Li Z, Qu Y, Xie Z. Highly Efficient TADF Polymer Electroluminescence with Reduced Efficiency Roll-off via Interfacial Exciplex Host Strategy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:47-52. [PMID: 29283240 DOI: 10.1021/acsami.7b16887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solution-processed organic light-emitting diodes (s-OLED) consisting of TAPC/TmPyPB interfacial exciplex host and polymer PAPTC TADF emitter are prepared, simultaneously displaying ultralow voltages (2.50/2.91/3.51/4.91 V at luminance of 1/100/1000/1000 cd m-2), high efficiencies (14.9%, 50.1 lm W-1), and extremely low roll-off rates (J50 of 63.16 mA cm-2, L50 of ca. 15000 cd m-2). Such performance is distinctly higher than that of pure-PAPTC s-OLED. Compared to pure-PAPTC, the advanced emissive layer structure of TAPC:PAPTC/TmPyPB is unique in much higher PL quantum yield (79.5 vs 36.3%) and nearly 4-fold enhancement in kRISC of the PAPTC emitter to 1.48 × 107 s-1.
Collapse
Affiliation(s)
- Xingdong Lin
- School of Science, Changchun University of Science and Technology , Changchun 130022, P. R. China
| | - Yunhui Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Baohua Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Xiaofei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Bing Yao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Zhanguo Li
- School of Science, Changchun University of Science and Technology , Changchun 130022, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Yi Qu
- School of Science, Changchun University of Science and Technology , Changchun 130022, P. R. China
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
45
|
Kim HJ, Lee C, Godumala M, Choi S, Park SY, Cho MJ, Park S, Choi DH. Solution-processed thermally activated delayed fluorescence organic light-emitting diodes using a new polymeric emitter containing non-conjugated cyclohexane units. Polym Chem 2018. [DOI: 10.1039/c7py02113e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new solution-processable polymeric emitter containing non-conjugated cyclohexane units was developed for high-performing TADF-OLEDs.
Collapse
Affiliation(s)
- Hyung Jong Kim
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Chiho Lee
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Mallesham Godumala
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Suna Choi
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Seo Yeon Park
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Min Ju Cho
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Sungnam Park
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry
- Research Institute for Natural Sciences
- Korea University
- Seoul 136-701
- Republic of Korea
| |
Collapse
|
46
|
Shao S, Hu J, Wang X, Wang L, Jing X, Wang F. Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. J Am Chem Soc 2017; 139:17739-17742. [PMID: 29149569 DOI: 10.1021/jacs.7b10257] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We demonstrate novel molecular design for thermally activated delayed fluorescence (TADF) polymers based on a nonconjugated polyethylene backbone with through-space charge transfer effect between pendant electron donor (D) and acceptor (A) units. Different from conventional conjugated D-A polymers with through-bond charge transfer effect, the nonconjugated architecture avoids direct conjugation between D and A units, enabling blue emission. Meanwhile, spatial π-π interaction between the physically separated D and A units results in both small singlet-triplet energy splitting (0.019 eV) and high photoluminescence quantum yield (up to 60% in film state). The resulting polymer with 5 mol % acceptor unit gives efficient blue electroluminescence with Commission Internationale de l'Eclairage coordinates of (0.176, 0.269), together with a high external quantum efficiency of 12.1% and low efficiency roll-off of 4.9% (at 1000 cd m-2), which represents the first example of blue TADF nonconjugated polymer.
Collapse
Affiliation(s)
- Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China.,University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| |
Collapse
|
47
|
Ban X, Zhu A, Zhang T, Tong Z, Jiang W, Sun Y. Highly Efficient All-Solution-Processed Fluorescent Organic Light-Emitting Diodes Based on a Novel Self-Host Thermally Activated Delayed Fluorescence Emitter. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21900-21908. [PMID: 28593760 DOI: 10.1021/acsami.7b04146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we conveniently designed and synthesized a self-host thermally activated delayed fluorescence (TADF) emitter, which can not only form a uniform thin film through wet-process, but also allow the subsequently deposition of electron transporting layer (ETL) by orthogonal solvent. By using this self-host material as emitter, the all-solution-processed multilayer TADF organic light emitting diodes (OLEDs) was successfully fabricated. The maximum current, power and external quantum efficiencies of this nondoped device are 46.3 cd A-1, 39.3 lm W1- and 15.5%, respectively, which are much higher than the values of all-solution-processed OLEDs based on tranditional fluorescence and even comparable to the TADF devices with vacuum-deposited ETL. Moreover, the device maintains the high efficiency of 42.9 cd A-1 and 39.0 cd A-1 at the luminance of 100 cd m-2 for display and 1000 cd m-2 for practical lighting. The high efficiency and small efficiency roll-off of the all-solution-processed fluorescent OLEDs can be attributed to the superiority of the newly designed self-host TADF emitter, which possesses the perfect electroluminescent property and sufficient solvent resistance at the same time.
Collapse
Affiliation(s)
- Xinxin Ban
- School of Chemical Engineering, Huaihai Institute of Technology , Lianyungang, Jiangsu 222005, China
| | - Aiyun Zhu
- School of Chemical Engineering, Huaihai Institute of Technology , Lianyungang, Jiangsu 222005, China
| | - Tianlin Zhang
- School of Chemical Engineering, Huaihai Institute of Technology , Lianyungang, Jiangsu 222005, China
| | - Zhiwei Tong
- School of Chemical Engineering, Huaihai Institute of Technology , Lianyungang, Jiangsu 222005, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing, Jiangsu 211189, China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing, Jiangsu 211189, China
| |
Collapse
|
48
|
Dias FB, Penfold TJ, Monkman AP. Photophysics of thermally activated delayed fluorescence molecules. Methods Appl Fluoresc 2017; 5:012001. [DOI: 10.1088/2050-6120/aa537e] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Xie G, Luo J, Huang M, Chen T, Wu K, Gong S, Yang C. Inheriting the Characteristics of TADF Small Molecule by Side-Chain Engineering Strategy to Enable Bluish-Green Polymers with High PLQYs up to 74% and External Quantum Efficiency over 16% in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604223. [PMID: 28060416 DOI: 10.1002/adma.201604223] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Thermally activated delayed fluorescence (TADF) polymers are designed and synthesized by grafting the TADF emitter to the side chain of the polycarbazole backbone. By employing these TADF polymers with large ratio of delayed fluorescence component and high photoluminescence quantum yield as the emitters, the solution-processed light-emitting diodes achieve a maximal external quantum efficiency of 16.1% at a luminance of around 100 cd m-2 .
Collapse
Affiliation(s)
- Guohua Xie
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiajia Luo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Manli Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Tianheng Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Kailong Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shaolong Gong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuluo Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
50
|
Affiliation(s)
- Yujun Xie
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry; Wuhan University; Wuhan 430072 China
| |
Collapse
|