1
|
Jiang C, Zhao C, Xu P, Song Q, Tao X, Lin S. Effects of Secondary Structures and pH on the Self-Assembly of Poly(ethylene glycol)- b-polytyrosine. Biomacromolecules 2024; 25:5028-5038. [PMID: 38950188 DOI: 10.1021/acs.biomac.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Different from conventional synthetic polymers, polypeptides exhibit a distinguishing characteristic of adopting specific secondary structures, including random coils, α-helixes, and β-sheets. The conformation determines the rigidity and solubility of polypeptide chains, which further direct the self-assembly and morphology of the nanostructures. We studied the effect of distinct secondary structures on the self-assembly behavior of polytyrosine (PTyr)-derived amphiphilic copolymers. Two block copolymers of enantiopure poly(ethylene glycol)-b-poly(l-tyrosine) (PEG-b-P(l-Tyr)) and racemic poly(ethylene glycol)-b-poly(dl-tyrosine) (PEG-b-P(dl-Tyr)) were synthesized through the ring-opening polymerization of l-tyrosine N-thiocarboxyanhydride (l-Tyr-NTA) and dl-tyrosine N-thiocarboxyanhydride (dl-Tyr-NTA), respectively, by using poly(ethylene glycol) amine as the initiator. PEG44-b-P(l-Tyr)10 adopts a β-sheet conformation and self-assembles into rectangular nanosheets in aqueous solutions, while PEG44-b-P(dl-Tyr)9 is primarily in a random coil conformation with a tiny content of β-sheet structures, which self-assembles into sheaf-like nanofibrils. A pH increase results in the ionization of phenolic hydroxyl groups, which decreases the β-sheet content and increases the random coil content of the PTyr segments. Accordingly, PEG44-b-P(l-Tyr)10 and PEG44-b-P(dl-Tyr)9 self-assemble to form slender nanobelts and twisted nanoribbons, respectively, in alkaline aqueous solutions. The secondary structure-driven self-assembly of PTyr-derived copolymers is promising to construct filamentous nanostructures, which have potential for applications in controlled drug release.
Collapse
Affiliation(s)
- Caixia Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chonghao Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qipeng Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinfeng Tao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Wan Y, Zhou J, Ni J, Cai Y, Cohen Stuart M, Wang J. Electrostatically Mediated In Situ Polymerization for Enzyme Immobilization and Activation. Biomacromolecules 2024; 25:809-818. [PMID: 38181098 DOI: 10.1021/acs.biomac.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Enzyme immobilization in nanoparticles is of interest for boosting their catalytic applications, yet rational approaches to designs achieving both high enzyme loading and activation remain a challenge. Herein, we report an electrostatically mediated in situ polymerization strategy that simultaneously realizes enzyme immobilization and activation. This was achieved by copolymerizing cationic monomers with a cross-linker in the presence of the enzyme lipase (anionic) as the template, which produces enzyme-loaded nanogels. The effects of different control factors such as pH, lipase dosage, and cross-linker fraction on nanogel formation are investigated systematically, and optimal conditions for enzyme loading and activation have been determined. A central finding is that the cationic polymer network of the nanogel creates a favorable environment that not only protects the enzyme but also boosts enzymatic activity nearly 2-fold as compared to free lipase. The nanogels improve the stability of the lipase to tolerate a broader working range of pH (5.5-8.5) and temperature (25-70 °C) and allow recycling such that after six cycles of reaction, 70% of the initial activity is conserved. The established fabrication strategy can be applied generally to different cationic monomers, and most of these nanogels exhibit adequate immobilization and activation of lipase. Our study confirms that in situ polymerization based on electrostatic interaction provides a facile and robust strategy for enzyme immobilization and activation. The wide variety of ionic monomers, therefore, features great potential for developing functional platforms toward satisfying enzyme immobilization and demanding applications.
Collapse
Affiliation(s)
- Yuting Wan
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jiaying Ni
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Ying Cai
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Martien Cohen Stuart
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
3
|
Cai Y, Zhou J, Huang J, Zhou W, Wan Y, Cohen Stuart MA, Wang J. Rational design of polymeric nanozymes with robust catalytic performance via copper-ligand coordination. J Colloid Interface Sci 2023; 645:458-465. [PMID: 37156154 DOI: 10.1016/j.jcis.2023.04.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Incorporating copper (Cu) ions into polymeric particles can be a straightforward strategy for mimicking copper enzymes, but it is challenging to simultaneously control the structure of the nanozyme and of the active sites. In this report, we present a novel bis-ligand (L2) containing bipyridine groups connected by a tetra-ethylene oxide (4EO) spacer. In phosphate buffer the Cu-L2 mixture forms coordination complexes that (at proper composition) can bind polyacrylic acid (PAA) to produce catalytically active polymeric nanoparticles with well-defined structure and size, which we refer to as 'nanozymes'. Manipulating the L2/Cu mixing ratio and using phosphate as a co-binding motif, cooperative copper centres are realized that exhibit promoted oxidation activity. The structure and activity of the so-designed nanozymes remain stable upon increasing temperature and over multiple cycles of application. Increasing ionic strength causes enhanced activity, a response also seen for natural tyrosinase. By means of our rational design we obtain nanozymes with optimized structure and active sites that in several respects outperform natural enzymes. This approach therefore demonstrates a novel strategy for developing functional nanozymes, which may well stimulate the application of this class of catalysts.
Collapse
Affiliation(s)
- Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jianan Huang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Zhang X, Chen G, Liu L, Zhu L, Tong Z. Precise Control of Two-Dimensional Platelet Micelles from Biodegradable Poly( p-dioxanone) Block Copolymers by Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xu Zhang
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guanhao Chen
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lingyuan Zhu
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zaizai Tong
- College of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Liu D, Ding X, Ding J, Sun J. Polypeptoid-Assisted Formation of Supramolecular Architectures from Folic Acid for Targeted Cancer Therapy with Enhanced Efficacy. Biomacromolecules 2022; 23:2793-2802. [DOI: 10.1021/acs.biomac.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dandan Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Ding
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Ding
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Lin M, Sun J. Antimicrobial peptide–inspired antibacterial polymeric materials for biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Cai Y, Ding P, Ni J, Zhou L, Ahmad A, Guo X, Cohen Stuart MA, Wang J. Regulated Polyelectrolyte Nanogels for Enzyme Encapsulation and Activation. Biomacromolecules 2021; 22:4748-4757. [PMID: 34628859 DOI: 10.1021/acs.biomac.1c01030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyelectrolyte (PE) nanogels consisting of cross-linked PE networks integrate the advanced features of both nanogels and PEs. The soft environment and abundant intrinsic charges are of special interest for enzyme immobilization. However, the crucial factors that regulate enzyme encapsulation and activation remain obscure to date. Herein, we synthesized cationic poly (dimethyl aminoethyl methacrylate), PDMAEMA, nanogels with well-defined size and cross-link degrees and fully investigated the effects of different control factors on lipase immobilization. We demonstrate that the cationic PDMAEMA nanogels indeed enable efficient and safe loading of anionic lipase without disturbing their structures. Strong charge interaction achieved by tuning pH and larger particle size are favorable for lipase loading, while the enhanced enzymatic activity demands nanogels with smaller size and a moderate cross-link degree. As such, PDMAEMA nanogels with a hydrodynamic radius of 35 nm and 30% cross-linker fraction display the optimal catalytic efficiency, which is fourfold of that of free lipase. Moreover, the immobilization endows enhanced enzymatic activity in a broad scope of pH, ionic strength, and temperature, demonstrating effective protection and activation of lipase by the designed nanogels. Our study validates the crucial controls of the size and structure of PE nanogels on enzyme encapsulation and activation, and the revealed findings shall be helpful for designing functional PE nanogels and boosting their applications for enzyme immobilization.
Collapse
Affiliation(s)
- Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jiaying Ni
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Lu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Ayyaz Ahmad
- Department of Chemical Engineering, MNS University of Engineering and Technology, Multan 60000, Pakistan
| | - Xuhong Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
8
|
Kudaibergenov SE. Synthetic and natural polyampholytes: Structural and behavioral similarity. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology Atyrau Kazakhstan
- Laboratory of Engineering Profile Satbayev University Almaty Kazakhstan
| |
Collapse
|
9
|
Dharmayanti C, Gillam TA, Klingler-Hoffmann M, Albrecht H, Blencowe A. Strategies for the Development of pH-Responsive Synthetic Polypeptides and Polymer-Peptide Hybrids: Recent Advancements. Polymers (Basel) 2021; 13:624. [PMID: 33669548 PMCID: PMC7921987 DOI: 10.3390/polym13040624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic polypeptides and polymer-peptide hybrid materials have been successfully implemented in an array of biomedical applications owing to their biocompatibility, biodegradability and ability to mimic natural proteins. In addition, these materials have the capacity to form complex supramolecular structures, facilitate specific biological interactions, and incorporate a diverse selection of functional groups that can be used as the basis for further synthetic modification. Like conventional synthetic polymers, polypeptide-based materials can be designed to respond to external stimuli (e.g., light and temperature) or changes in the environmental conditions (e.g., redox reactions and pH). In particular, pH-responsive polypeptide-based systems represent an interesting avenue for the preparation of novel drug delivery systems that can exploit physiological or pathological pH variations within the body, such as those that arise in the extracellular tumour microenvironment, intracellularly within endosomes/lysosomes, or during tissue inflammation. Here, we review the significant progress made in advancing pH-responsive polypeptides and polymer-peptide hybrid materials during the last five years, with a particular emphasis on the manipulation of ionisable functional groups, pH-labile linkages, pH-sensitive changes to secondary structure, and supramolecular interactions.
Collapse
Affiliation(s)
- Cintya Dharmayanti
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| | - Todd A. Gillam
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
- Surface Interactions and Soft Matter Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | | | - Hugo Albrecht
- Drug Discovery and Development Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| |
Collapse
|
10
|
Wang M, Xu L, Lin M, Li Z, Sun J. Fabrication of reversible pH-responsive aggregation-induced emission luminogens assisted by a block copolymer via a dynamic covalent bond. Polym Chem 2021. [DOI: 10.1039/d1py00312g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aggregated induced emission (AIE) molecules with stimuli-responsive properties have attracted increasing attention for many applications.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Min Lin
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| |
Collapse
|
11
|
Sun J, Li Z. Polyion Complexes via Electrostatic Interaction of Oppositely Charged Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Abstract
Abstract
The macromolecular complexes of random, regular, graft, block and dendritic polyampholytes with respect to transition metal ions, surfactants, dyes, polyelectrolytes, and proteins are discussed in this review. Application aspects of macromolecular complexes of polyampholytes in biotechnology, medicine, nanotechnology, catalysis are demonstrated.
Collapse
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology , Almaty , Kazakhstan
- Laboratory of Engineering Profile, Satbayev University , Almaty , Kazakhstan
| |
Collapse
|
13
|
Meng Y, Lyu F, Xu X, Zhang L. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules 2020; 21:1653-1677. [PMID: 31986015 DOI: 10.1021/acs.biomac.9b01644] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides derived from renewable biomass sources are regarded as environmentally friendly and sustainable polymers. As the third most abundant biomacromolecule in nature, after proteins and nucleic acids, polysaccharides are also closely related with many different life activities. In particular, β-glucans are one of the most widely reported bioactive polysaccharides and are usually considered as biological response modifiers. Among them, β-glucans with triple-helix conformation have been the hottest and most well-researched polysaccharides at present, especially lentinan and schizophyllan, which are clinically used as cancer therapies in some Asian countries. Thus, creation of these active triple-helix polysaccharides is beneficial to the research and development of sustainable "green" biopolymers in the fields of food and life sciences. Therefore, full fundamental research of triple-helix polysaccharides is essential to discover more applications for polysaccharides. In this Review, the recent research progress of chain conformations, bioactivities, and structure-function relationships of triple-helix β-glucans is summarized. The main contents include the characterization methods of the macromolecular conformation, proof of triple helices, bioactivities, and structure-function relationships. We believe that the governments, enterprises, universities, and institutes dealing with the survival and health of human beings can expect the development of natural bioproducts in the future. Hence, a deep understanding of β-glucans with triple-helix chain conformation is necessary for application of natural medicines and biologics for a sustainable world.
Collapse
Affiliation(s)
- Yan Meng
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China.,College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fengzhi Lyu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Li H, Li X, Ji J. Mixed‐charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1600. [DOI: 10.1002/wnan.1600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Huan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xu Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
15
|
Meng F, Sun J, Li Z. Stimuli‐Responsive Polypeptide‐Based Supramolecular Hydrogels Mediated by Ca
2+
Ion Cross‐Linking. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fandong Meng
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao Shandong 266042 China
| |
Collapse
|
16
|
OEGylated polypeptide bearing Y-Shaped pendants with a LCST close to body temperature: Synthesis and thermoresponsive properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Wei Y, Tian J, Zhang Z, Zhu C, Sun J, Li Z. Supramolecular Nanosheets Assembled from Poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) Diblock Copolymer Containing Crystallizable Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02230] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuhan Wei
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiliang Tian
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zekun Zhang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
18
|
Otter R, Besenius P. Supramolecular assembly of functional peptide–polymer conjugates. Org Biomol Chem 2019; 17:6719-6734. [DOI: 10.1039/c9ob01191a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The following review gives an overview about synthetic peptide–polymer conjugates as macromolecular building blocks and their self-assembly into a variety of supramolecular architectures, from supramolecular polymer chains, to anisotropic 1D arrays, 2D layers, and more complex 3D networks.
Collapse
Affiliation(s)
- Ronja Otter
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| | - Pol Besenius
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
19
|
Liarou E, Varlas S, Skoulas D, Tsimblouli C, Sereti E, Dimas K, Iatrou H. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Gan Y, Wang ZD, Lu ZX, Shi Y, Tan HY, Yan CF. Control on the Morphology of ABA Amphiphilic Triblock Copolymer Micelles in Dioxane/Water Mixture Solvent. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2066-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Konishcheva E, Daubian D, Gaitzsch J, Meier W. Synthesis of Linear ABC Triblock Copolymers and Their Self-Assembly in Solution. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Evgeniia Konishcheva
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Davy Daubian
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Wolfgang Meier
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
22
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
23
|
Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem Soc Rev 2017; 46:6570-6599. [PMID: 28944387 DOI: 10.1039/c7cs00460e] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Synthetic polypeptides from the ring-opening polymerization of N-carboxyanhydrides (NCAs) are one of the most important biomaterials. The unique features of these synthetic polypeptides, including their chemical diversity of side chains and their ability to form secondary structures, enable their broad applications in the field of gene delivery, drug delivery, bio-imaging, tissue engineering, and antimicrobials. In this review article, we summarize the recent advances in the design of polypeptide-based supramolecular structures, including complexes with nucleic acids, micelles, vesicles, hybrid nanoparticles, and hydrogels. We also highlight the progress in the chemical design of functional polypeptides, which plays a crucial role to manipulate their assembly behaviours and optimize their biomedical performances. Finally, we conclude the review by discussing the future opportunities in this field, including further studies on the secondary structures and cost-effective synthesis of polypeptide materials.
Collapse
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
A novel self-assembly Lentinan-tetraphenylethylene composite with strong blue fluorescence in water and its properties. Carbohydr Polym 2017; 174:13-24. [DOI: 10.1016/j.carbpol.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022]
|
25
|
Ni Y, Sun J, Wei Y, Fu X, Zhu C, Li Z. Two-Dimensional Supramolecular Assemblies from pH-Responsive Poly(ethyl glycol)-b-poly(l-glutamic acid)-b-poly(N-octylglycine) Triblock Copolymer. Biomacromolecules 2017; 18:3367-3374. [DOI: 10.1021/acs.biomac.7b01014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yunxia Ni
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Jing Sun
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Yuhan Wei
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Xiaohui Fu
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Chenhui Zhu
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhibo Li
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| |
Collapse
|
26
|
Biswas S, Samui S, Chakraborty A, Biswas S, De D, Ghosh U, Das AK, Naskar J. Insight into the binding of a non-toxic, self-assembling aromatic tripeptide with ct-DNA: Spectroscopic and viscositic studies. Biochem Biophys Rep 2017; 11:112-118. [PMID: 28955776 PMCID: PMC5614701 DOI: 10.1016/j.bbrep.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/22/2022] Open
Abstract
The report describes the synthesis, self-association and DNA binding studies of an aromatic tripeptide H-Phe-Phe-Phe-OH (FFF). The peptide backbone adopts β-sheet conformation both in solid and solution. In aqueous solution, FFF self-assembles to form nanostructured aggregates. Interactions of this peptide with calf-thymus DNA (ct-DNA) have been studied using various biophysical techniques including ultraviolet (UV) absorption spectroscopy, fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The value of mean binding constant calculated from UV and fluorescence spectroscopic data is (2.914 ± 0.74) x 103 M-1 which is consistent with an external binding mode. Fluorescence intercalator displacement (FID) assay, iodide quenching study, viscosity measurement and thermal denaturation study of DNA further confirm the groove binding mode of peptide, FFF with ct-DNA. MTT cell survival assay reveals very low cytotoxicity of the peptide toward human lung carcinoma cell line A549.
Collapse
Affiliation(s)
- Soumi Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Nadia, WB 741235, India
| | - Satyabrata Samui
- Department of Biochemistry & Biophysics, University of Kalyani, Nadia, WB 741235, India
| | - Arpita Chakraborty
- Department of Biochemistry & Biophysics, University of Kalyani, Nadia, WB 741235, India
| | - Sagar Biswas
- Department of Chemistry, Indian Institute of Technology, Indore, Khandwa Road, Indore 453552, India
| | - Debapriya De
- Department of Biochemistry & Biophysics, University of Kalyani, Nadia, WB 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Nadia, WB 741235, India
| | - Apurba K. Das
- Department of Chemistry, Indian Institute of Technology, Indore, Khandwa Road, Indore 453552, India
| | - Jishu Naskar
- Department of Biochemistry & Biophysics, University of Kalyani, Nadia, WB 741235, India
| |
Collapse
|
27
|
Dual thermal- and pH-responsive polypeptide-based hydrogels. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1959-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
|