1
|
Ospennikov AS, Shibaev AV, Philippova OE. Double Photocrosslinked Responsive Hydrogels Based on Hydroxypropyl Guar. Int J Mol Sci 2023; 24:17477. [PMID: 38139305 PMCID: PMC10744163 DOI: 10.3390/ijms242417477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Double crosslinked hydrogels based on a biodegradable polymer were prepared by photocopolymerization of methacrylated hydroxypropyl guar (HPG-MA) and 3-acrylamidophenylboronic acid. Along with irreversible strong covalent crosslinks by methacrylic groups, these hydrogels contained labile boronate crosslinks formed as a result of the interaction of boronic acid with cis-diol moieties of HPG. These hydrogels demonstrated higher elasticity than HPG-MA hydrogels with only irreversible covalent crosslinks. Labile boronate crosslinks not only strengthened the hydrogels but also imparted to them pronounced responsive properties. It was demonstrated that the mechanical properties, the swelling behavior, as well as the uptake and release of some substances from the double crosslinked hydrogel were pH controlled. For instance, the hydrogels could release cationic disinfectant at a rate regulated by pH. Such photocrosslinkable in situ forming hydrogels are very promising for the production of smart coatings that release targeted substances at the desired rate.
Collapse
Affiliation(s)
| | | | - Olga E. Philippova
- Physics Department, Moscow State University, Moscow 119991, Russia; (A.S.O.); (A.V.S.)
| |
Collapse
|
2
|
Xanthan gum in aqueous solutions: Fundamentals and applications. Int J Biol Macromol 2022; 216:583-604. [DOI: 10.1016/j.ijbiomac.2022.06.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
3
|
Dual Transient Networks of Polymer and Micellar Chains: Structure and Viscoelastic Synergy. Polymers (Basel) 2021; 13:polym13234255. [PMID: 34883758 PMCID: PMC8659570 DOI: 10.3390/polym13234255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Dual transient networks were prepared by mixing highly charged long wormlike micelles of surfactants with polysaccharide chains of hydroxypropyl guar above the entanglement concentration for each of the components. The wormlike micelles were composed of two oppositely charged surfactants potassium oleate and n-octyltrimethylammonium bromide with a large excess of anionic surfactant. The system is macroscopically homogeneous over a wide range of polymer and surfactant concentrations, which is attributed to a stabilizing effect of surfactants counterions that try to occupy as much volume as possible in order to gain in translational entropy. At the same time, by small-angle neutron scattering (SANS) combined with ultrasmall-angle neutron scattering (USANS), a microphase separation with the formation of polymer-rich and surfactant-rich domains was detected. Rheological studies in the linear viscoelastic regime revealed a synergistic 180-fold enhancement of viscosity and 65-fold increase of the longest relaxation time in comparison with the individual components. This effect was attributed to the local increase in concentration of both components trying to avoid contact with each other, which makes the micelles longer and increases the number of intermicellar and interpolymer entanglements. The enhanced rheological properties of this novel system based on industrially important polymer hold great potential for applications in personal care products, oil recovery and many other fields.
Collapse
|
4
|
Double dynamic hydrogels formed by wormlike surfactant micelles and cross-linked polymer. J Colloid Interface Sci 2021; 611:46-60. [PMID: 34929438 DOI: 10.1016/j.jcis.2021.11.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Interpenetrating networks consisting of a polymer network with dynamic cross-links and a supramolecular network allow obtaining hydrogels with significantly enhanced mechanical properties. EXPERIMENTS Binary hydrogels composed of a dynamically cross-linked poly(vinyl alcohol) (PVA) network and a transient network of entangled highly charged mixed wormlike micelles (WLMs) of surfactants (potassium oleate and n-octyltrimethylammonium bromide) were prepared and studied by rheometry, SANS, USANS, cryo-TEM, and NMR spectroscopy. FINDINGS Binary hydrogels show significantly enhanced rheological properties (a 3400-fold higher viscosity and 27-fold higher plateau modulus) as compared to their components taken separately. This is due to the microphase separation leading to local concentrating of PVA and WLMs providing larger number of polymer-polymer contacts for cross-linking and longer WLMs with more entanglements. Such materials are very promising for the application in many areas, ranging from enhanced oil recovery to biomedical uses.
Collapse
|
5
|
Glukhova SA, Molchanov VS, Lokshin BV, Rogachev AV, Tsarenko AA, Patsaev TD, Kamyshinsky RA, Philippova OE. Printable Alginate Hydrogels with Embedded Network of Halloysite Nanotubes: Effect of Polymer Cross-Linking on Rheological Properties and Microstructure. Polymers (Basel) 2021; 13:4130. [PMID: 34883633 PMCID: PMC8659288 DOI: 10.3390/polym13234130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Rapidly growing 3D printing of hydrogels requires network materials which combine enhanced mechanical properties and printability. One of the most promising approaches to strengthen the hydrogels consists of the incorporation of inorganic fillers. In this paper, the rheological properties important for 3D printability were studied for nanocomposite hydrogels based on a rigid network of percolating halloysite nanotubes embedded in a soft alginate network cross-linked by calcium ions. Particular attention was paid to the effect of polymer cross-linking on these properties. It was revealed that the system possessed a pronounced shear-thinning behavior accompanied by a viscosity drop of 4-5 orders of magnitude. The polymer cross-links enhanced the shear-thinning properties and accelerated the viscosity recovery at rest so that the system could regain 96% of viscosity in only 18 s. Increasing the cross-linking of the soft network also enhanced the storage modulus of the nanocomposite system by up to 2 kPa. Through SAXS data, it was shown that at cross-linking, the junction zones consisting of fragments of two laterally aligned polymer chains were formed, which should have provided additional strength to the hydrogel. At the same time, the cross-linking of the soft network only slightly affected the yield stress, which seemed to be mainly determined by the rigid percolation network of nanotubes and reached 327 Pa. These properties make the alginate/halloysite hydrogels very promising for 3D printing, in particular, for biomedical purposes taking into account the natural origin, low toxicity, and good biocompatibility of both components.
Collapse
Affiliation(s)
| | | | - Boris V. Lokshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Andrei V. Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia; (A.V.R.); (A.A.T.); (R.A.K.)
| | - Alexey A. Tsarenko
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia; (A.V.R.); (A.A.T.); (R.A.K.)
| | - Timofey D. Patsaev
- Kurchatov Complex of NBICS-Technologies, National Research Center Kurchatov Institute, Moscow 123182, Russia;
| | - Roman A. Kamyshinsky
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia; (A.V.R.); (A.A.T.); (R.A.K.)
- Kurchatov Complex of NBICS-Technologies, National Research Center Kurchatov Institute, Moscow 123182, Russia;
| | | |
Collapse
|
6
|
Abstract
We apply a scaling theory of semidilute polymer solutions to quantify solution properties of polysaccharides such as galactomannan, chitosan, sodium carboxymethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, xanthan, apple pectin, cellulose tris(phenyl carbamate), hydroxyethyl cellulose, hydroxypropyl cellulose, sodium hyaluronate, sodium alginate, and sodium κ-carrageenan. In particular, we obtain the molar mass of the chain segment inside a correlation blob M g = B̂ 3/(3ν-1) c 1/(1-3ν) as a function of concentration c, interaction parameter B̂, and exponent ν. Parameter B̂ assumes values B̂ g, B̂ th and M 0/N A 1/3 l for exponents v = 0.588, 0.5 and 1, respectively, where M 0 is the molar mass of a repeat unit, l is the projection length of a repeat unit, and N A is the Avogadro number. In the different solution regimes, the values of the B̂-parameters are extracted from the plateaus of the normalized specific viscosity ηsp (c)/M w c 1/(3ν-1), where M w is the weight-average molecular weight of the polymer chain. The values of the B̂-parameters are used in calculations of the excluded volume v, Kuhn length b, and crossover concentrations c*, c th, and c** into a semidilute polymer solution, a solution of overlapping thermal blobs and a concentrated polymer solution, respectively. This information is summarized as a diagram of states of different polysaccharide solution regimes by implementing a v/bl 2 and c/c** representation. The scaling approach is extended to the entangled solution regime, allowing us to obtain the chain packing number, P̃ e. This completes the set of parameters {B̂ g, B̂ th, P̃ e} which uniquely describes the static and dynamic properties of a polysaccharide solution.
Collapse
|
7
|
Wang T, Kang W, Yang H, Li Z, Zhu T, Sarsenbekuly B, Gabdullin M. An Advanced Material with Synergistic Viscoelasticity Enhancement of Hydrophobically Associated Water-Soluble Polymer and Surfactant. Macromol Rapid Commun 2021; 42:e2100033. [PMID: 33904224 DOI: 10.1002/marc.202100033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Indexed: 11/11/2022]
Abstract
In order to prepare materials with controllable properties, changeable microstructure, and high viscoelasticity solution with low polymer and surfactant concentration, a composite is constituted by adding surfactant (sodium dodecyl sulfate, SDS) to hydrophobically associated water-soluble polymer (abbreviated as PAAC) solution. The viscoelasticity, aggregate microstructure, and interaction mechanism of the composite are investigated by rheometery, Cryo-transmission electron microscopy (Cryo-TEM), and fluorescence spectrum. The results show that when the mass ratio of polymer to surfactant is 15:1, the viscosity of the composite reaches the maximum. The viscosity of the composite system increases hundredfold. The viscosity plateau under dynamic shear is generated. The composite has the properties of high viscoelasticity, strong shear thinning behavior, and good salt tolerance, and temperature resistance. The maximum viscosity of the composite is shown at the salinity of 20000 mg L-1 . In addition, there is no phase separation in the composite with the increase of polymer and surfactant concentration, which indicates the good stability of the system. It is proposed a method to obtain a high viscoelasticity solution by adding surfactants without wormlike micelles to a hydrophobically associated water-soluble polymer solution.
Collapse
Affiliation(s)
- Tongyu Wang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wanli Kang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hongbin Yang
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhe Li
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Tongyu Zhu
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bauyrzhan Sarsenbekuly
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| | - Maratbek Gabdullin
- Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| |
Collapse
|
8
|
Shibaev AV, Doroganov AP, Larin DE, Smirnova ME, Cherkaev GV, Kabaeva NM, Kitaeva DK, Buyanovskaya AG, Philippova OE. Hydrogels of Polysaccharide Carboxymethyl Hydroxypropyl Guar Crosslinked by Multivalent Metal Ions. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Hydrogels of polysaccharide carboxymethyl hydroxypropyl guar crosslinked by chromium(III) ions are synthesized. The effect of crosslinker concentration on the mechanical behavior of the gels is studied, and the amount of chromium compounds able to interact with polymer chains and the amount of carboxyl groups of the polymer involved in crosslinking are compared. It is shown that the elastic modulus of the gels attains a constant value when not all but only about 10% functional groups interact with chromium compounds. At high concentrations, crosslinker molecules basically bind to one functional group; as a result, the gel recharges. This binding proceeds until all carboxyl groups are filled.
Collapse
|
9
|
Shibaev AV, Aleshina AL, Arkharova NA, Orekhov AS, Kuklin AI, Philippova OE. Disruption of Cationic/Anionic Viscoelastic Surfactant Micellar Networks by Hydrocarbon as a Basis of Enhanced Fracturing Fluids Clean-Up. NANOMATERIALS 2020; 10:nano10122353. [PMID: 33260867 PMCID: PMC7761115 DOI: 10.3390/nano10122353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Studies of the effects produced by the solubilization of hydrophobic substances by micellar aggregates in water medium are quite important for applications of viscoelastic surfactant solutions for enhanced oil recovery (EOR), especially in hydraulic fracturing technology. The present paper aims at the investigation of the structural transformations produced by the absorption of an aliphatic hydrocarbon (n-decane) by mixed wormlike micelles of cationic (n-octyltrimethylammonium bromide, C8TAB) and anionic (potassium oleate) surfactants enriched by C8TAB. As a result of contact with a small amount (0.5 wt%) of oil, a highly viscoelastic fluid is transformed to a water-like liquid. By small-angle neutron scattering (SANS) combined with cryo-TEM, it was shown that this is due to the transition of long wormlike micelles with elliptical cross-sections to ellipsoidal microemulsion droplets. The non-spherical shape was attributed to partial segregation of longer- and shorter-tail surfactant molecules inside the surfactant monolayer, providing an optimum curvature for both of them. As a result, the long-chain surfactant could preferably be located in the flatter part of the aggregates and the short-chain surfactant—at the ellipsoid edges with higher curvature. It is proven that the transition proceeds via a co-existence of microemulsion droplets and wormlike micelles, and upon the increase of hydrocarbon content, the size and volume fraction of ellipsoidal microemulsion droplets increase. The internal structure of the droplets was revealed by contrast variation SANS, and it was shown that, despite the excess of the cationic surfactant, the radius of surfactant shell is controlled by the anionic surfactant with longer tail. These findings open a way for optimizing the performance of viscoelastic surfactant fluids by regulating both the mechanical properties of the fluids and their clean-up from the fracture induced by contact with hydrocarbons.
Collapse
Affiliation(s)
- Andrey V. Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
- Correspondence: ; Tel.: +7-495-939-1464
| | - Anna L. Aleshina
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
| | | | - Anton S. Orekhov
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
| | - Alexander I. Kuklin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Olga E. Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.A.); (O.E.P.)
| |
Collapse
|
10
|
Shibaev AV, Muravlev DA, Muravleva AK, Matveev VV, Chalykh AE, Philippova OE. pH-Dependent Gelation of a Stiff Anionic Polysaccharide in the Presence of Metal Ions. Polymers (Basel) 2020; 12:polym12040868. [PMID: 32290178 PMCID: PMC7240365 DOI: 10.3390/polym12040868] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Cross-linking of polysaccharides by metal ions provides polymer gels highly required by industrial applications. In this article, we study the rheological properties and microstructure of solutions of a stiff anionic polysaccharide xanthan cross-linked by chromium (III) ions, and we demonstrate that their properties are highly sensitive to the preparation pH. Stable gels are obtained in a wide range of pH from 2.4 to 7.8. The maximum elastic modulus is observed for the gels made at pH 6.3, and by freeze-fracture transmission electron microscopy it is shown that they are characterized by the most dense network structure. However, out of this pH interval, no gelation is observed. At low pH (< 2.4) it is due to high protonation of carboxylic groups of xanthan preventing their interaction with chromium ions, and to the disappearance of oligomeric ions, which are effective in cross-linking. At high pH (> 7.8) the absence of gelation is caused by the transformation of reactive chromium ions into insoluble chromium hydroxide. At the same time, for the gels initially formed at pH 6.3, subsequent change of pH to strongly acidic (1.4) or basic (8.9) medium does not affect appreciably their properties, meaning that chromium cross-links are stable once they are formed. These observations open a reliable route to produce polysaccharide gels with required mechanical properties in a wide pH range where they initially cannot be prepared. It is also shown that the increase of pH to 6.3 of the initially ungelled solution prepared at pH 1.5 results in gelation. This effect offers a facile way for delayed gelation of polysaccharides, which is especially required by oil industry.
Collapse
Affiliation(s)
- Andrey V. Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence:
| | - Dmitry A. Muravlev
- Department of Gas Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (D.A.M.)
| | - Aleksandra K. Muravleva
- Department of Gas Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (D.A.M.)
| | - Vladimir V. Matveev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia (A.E.C.)
| | - Anatoly E. Chalykh
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia (A.E.C.)
| | - Olga E. Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
11
|
Structure, rheological and responsive properties of a new mixed viscoelastic surfactant system. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124284] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Shibaev AV, Mityuk DY, Muravlev DA, Philippova OE. Viscoelastic Solutions of Wormlike Micelles of a Cationic Surfactant and a Stiff-Chain Anionic Polyelectrolyte. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x19060099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Different responsiveness to hydrocarbons of linear and branched anionic/cationic-mixed wormlike surfactant micelles. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4428-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Shibaev AV, Makarov AV, Kuklin AI, Iliopoulos I, Philippova OE. Role of Charge of Micellar Worms in Modulating Structure and Rheological Properties of Their Mixtures with Nonionic Polymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Anton V. Makarov
- Physics
Department, Moscow State University, 119991 Moscow, Russia
| | | | - Ilias Iliopoulos
- PIMM, ENSAM, CNRS,
CNAM, 151 boulevard de l’Hôpital, 75013 Paris, France
| | | |
Collapse
|
15
|
Merino-González A, Kozina A. Influence of aggregation on characterization of dilute xanthan solutions. Int J Biol Macromol 2017; 105:834-842. [DOI: 10.1016/j.ijbiomac.2017.07.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|
16
|
Glagoleva AA, Vasilevskaya VV. Macromolecules with amphiphilic monomer units at interface of two immiscible liquids. J Chem Phys 2017; 147:184902. [DOI: 10.1063/1.5001880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- A. A. Glagoleva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, Moscow 119991, Russia
| | - V. V. Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova ul. 28, Moscow 119991, Russia
| |
Collapse
|
17
|
Morozova S, Muthukumar M. Elasticity at Swelling Equilibrium of Ultrasoft Polyelectrolyte Gels: Comparisons of Theory and Experiments. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Svetlana Morozova
- Polymer Science and Engineering
Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Murugappan Muthukumar
- Polymer Science and Engineering
Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Shibaev AV, Abrashitova KA, Kuklin AI, Orekhov AS, Vasiliev AL, Iliopoulos I, Philippova OE. Viscoelastic Synergy and Microstructure Formation in Aqueous Mixtures of Nonionic Hydrophilic Polymer and Charged Wormlike Surfactant Micelles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02385] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | - Anton S. Orekhov
- National
Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | | | | | | |
Collapse
|