1
|
Wang S, Li X. Soft composites with liquid inclusions: functional properties and theoretical models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:493003. [PMID: 39222657 DOI: 10.1088/1361-648x/ad765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Soft materials containing liquid inclusions have emerged as a promising class of materials. Unlike solid inclusions, liquid inclusions possess intrinsic fluidity, which allows them to retain the excellent deformation ability of soft materials. This can prevent compliance mismatches between the inclusions and the matrix, thus leading to improved performance and durability. Various liquids, including metallic, water-based, and ionic liquids, have been selected as inclusions for embedding into soft materials, resulting in unique properties and functionalities that enable a wide range of applications in soft robotics, wearable devices, and other cutting-edge fields. This review provides an overview of recent studies on the functional properties of composites with liquid inclusions and discusses theoretical models used to estimate these properties, aiming to bridge the gap between the microstructure/components and the overall properties of the composite from a theoretical perspective. Furthermore, current challenges and future opportunities for the widespread application of these composites are explored, highlighting their potential in advancing technologies.
Collapse
Affiliation(s)
- Shuang Wang
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiying Li
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
2
|
Song X, Zhou J, Qiao C, Xu X, Zhao S, Liu H. Engulfing Behavior of Nanoparticles into Thermoresponsive Microgels: A Mesoscopic Simulation Study. J Phys Chem B 2021; 125:2994-3004. [PMID: 33720720 DOI: 10.1021/acs.jpcb.1c00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The engulfing of nanoparticles into microgels provides a versatile platform to design nano- and microstructured materials with various shape anisotropies and multifunctional properties. Manipulating the spontaneous engulfment process remains elusive. Herein, we report a mesoscopic simulation study on the engulfing behavior of nanoparticles into thermoresponsive microgels. The effects of the multiple parameters, including binding strength, temperature, and nanoparticle size, are examined systematically. Our simulation results disclose three engulfing states at different temperatures, namely full-engulfing, half-engulfing, and surface contact. The engulfing depth is determined by the complementary balance of interfacial elastocapillarity. Specifically, the van der Waals interaction of hybrid microgel-nanoparticle offers the capillary force while the internally networked structure of microgel reinforces the elasticity repulsion. Our study, validated by relevant experimental results, provides a mechanistic understanding of the interfacial elastocapillarity for nanoparticle-microgels.
Collapse
Affiliation(s)
- Xianyu Song
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404020, China
| | - Jianzhuang Zhou
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chongzhi Qiao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
On-demand modulation of 3D-printed elastomers using programmable droplet inclusions. Proc Natl Acad Sci U S A 2020; 117:14790-14797. [PMID: 32541054 DOI: 10.1073/pnas.1917289117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the key thrusts in three-dimensional (3D) printing and direct writing is to seamlessly vary composition and functional properties in printed constructs. Most inks used for extrusion-based printing, however, are compositionally static and available approaches for dynamic tuning of ink composition remain few. Here, we present an approach to modulate extruded inks at the point of print, using droplet inclusions. Using a glass capillary microfluidic device as the printhead, we dispersed droplets in a polydimethylsiloxane (PDMS) continuous phase and subsequently 3D printed the resulting emulsion into a variety of structures. The mechanical characteristics of the 3D-printed constructs can be tuned in situ by varying the spatial distribution of droplets, including aqueous and liquid metal droplets. In particular, we report the use of poly(ethylene glycol) diacrylate (PEGDA) aqueous droplets for local PDMS chemistry alteration resulting in significant softening (85% reduced elastic modulus) of the 3D-printed constructs. Furthermore, we imparted magnetic functionality in PDMS by dispersing ferrofluid droplets and rationally designed and printed a rudimentary magnetically responsive soft robotic actuator as a functional demonstration of our droplet-based strategy. Our approach represents a continuing trend of adapting microfluidic technology and principles for developing the next generation of additive manufacturing technology.
Collapse
|
6
|
Chen Y, Wang Z, Kulkarni MM, Wang X, Al-Enizi AM, Elzatahry AA, Douglas JF, Dobrynin AV, Karim A. Hierarchically Patterned Elastomeric and Thermoplastic Polymer Films through Nanoimprinting and Ultraviolet Light Exposure. ACS OMEGA 2018; 3:15426-15434. [PMID: 31458199 PMCID: PMC6643988 DOI: 10.1021/acsomega.7b01116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
The surface relief structure of polymer films over large areas can be controlled by combining nanoscale imprinting and microscale ultraviolet-ozone (UVO) radiation, resulting in hierarchical structured surfaces. First, nanoscale patterns were formed by nanoimprinting elastomer [poly(dimethylsiloxane) (PDMS)] films with a pattern on a digital video disk. Micron-scale patterns were then superimposed on the nanoimprinted PDMS films by exposing them to ultraviolet radiation in oxygen (UVO) through a transmission electron microscopy grid mask having variable microscale patterning. UVO exposure leads to conversion and densification of PDMS to SiO x , leading to micron height relief features that follow a linear scaling relation with pattern dimension. Further, the pattern scopes are shown to collapse into a master curve by normalized feature values. Interestingly, these relief structures preserve the nanoscale features. In this paper, the influence of the self-limiting PDMS densification, wall stress at the boundary of micro-depression, and UVO exposure energy is studied in control of the micro-depression scale. This simple two-step imprinting process involving both nanoimprinting and UV radiation allows for facile fabrication of the dimension adjustable micro-nano hierarchically structures not only on elastomer films but also on thermoplastic polymer films. Coarse-grained molecular dynamics simulations were performed to correlate the surface tension and elastic properties of polymeric materials to the deformation of the pattern structure.
Collapse
Affiliation(s)
- Ying Chen
- Department
of Polymer Engineering and Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Zilu Wang
- Department
of Polymer Engineering and Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Manish M. Kulkarni
- Department
of Polymer Engineering and Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
- Center for
Nanosciences, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Xiaoteng Wang
- Department
of Polymer Engineering and Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Abdullah M. Al-Enizi
- Chemistry
Department, Faculty of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Elzatahry
- Materials
Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jack F. Douglas
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrey V. Dobrynin
- Department
of Polymer Engineering and Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Alamgir Karim
- Department
of Polymer Engineering and Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
7
|
Wu J, Ru CQ, Zhang L. An elliptical liquid inclusion in an infinite elastic plane. Proc Math Phys Eng Sci 2018. [DOI: 10.1098/rspa.2017.0813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beyond recent related literature, which focused on spherical incompressible liquid inclusions, the present work studies an elliptical compressible liquid inclusion in an infinite elastic plane under static remote mechanical loading. Here, it is assumed that the change of pressure inside the liquid inclusion is linearly related to the change of inclusion volume with the bulk modulus of the liquid as the proportionality coefficient. Also, the role of the liquid surface tension on the solid–liquid interface is examined especially when the size of the liquid inclusion is comparable to or smaller than the elastocapillary length. Our results show that both the surface tension and the change of liquid pressure have a significant effect on reducing the stress concentration factor at the endpoints of an elliptical liquid inclusion. In addition, the pressure change inside the liquid inclusion is studied when a uniaxial remote stress is applied perpendicular or parallel to the major axis of the elliptical liquid inclusion. In particular, the effective plane-strain Young's modulus of a solid–liquid composite containing circular liquid inclusions predicted by the present model is linearly related to the volume fraction of the liquid inclusions, in reasonable agreement with existing experimental data.
Collapse
Affiliation(s)
- J. Wu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - C. Q. Ru
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada T6G 2G8
| | - L. Zhang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|