1
|
Du S, Jiang Y, Jiang H, Zhang L, Liu M. Pathway-Dependent Self-Assembly for Control over Helical Nanostructures and Topochemical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202316863. [PMID: 38116831 DOI: 10.1002/anie.202316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Pathway-dependent self-assembly, in which a single building block forms two or more types of self-assembled nanostructures, is an important topic due to its mimic to the complexity in biology and manipulation of diverse supramolecular materials. Here, we report a pathway-dependent self-assembly using chiral glutamide derivatives (L or D-PAG), which form chiral nanotwist and nanotube through a cooperative slow cooling and an isodesmic fast cooling process, respectively. Furthermore, pathway-dependent self-assembly can be harnessed to control over the supramolecular co-assembly of PAG with a luminophore β-DCS or a photopolymerizable PCDA. Fast cooling leads to the co-assembled PAG/β-DCS nanotube exhibiting green circularly polarized luminescence (CPL), while slow cooling to nanofiber with blue CPL. Additionally, fast cooling process promotes the photopolymerization of PCDA into a red chiral polymer, whereas slow cooling inhibits the polymerization. This work not only demonstrates the pathway-dependent control over structural characteristics but also highlights the diverse functions emerged from the different assemblies.
Collapse
Affiliation(s)
- Sifan Du
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hejin Jiang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Ni Z, Qin P, Liu H, Chen J, Cai S, Tang W, Xiao H, Wang C, Qu G, Lin C, Fan Z, Xu ZX, Li G, Huang Z. Significant Enhancement of Circular Polarization in Light Emission through Controlling Helical Pitches of Semiconductor Nanohelices. ACS NANO 2023; 17:20611-20620. [PMID: 37796740 PMCID: PMC10604094 DOI: 10.1021/acsnano.3c07663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Circularly polarized light emission (CPLE) can be potentially applied to three-dimensional displays, information storage, and biometry. However, these applications are practically limited by a low purity of circular polarization, i.e., the small optical dissymmetry factor gCPLE. Herein, glancing angle deposition (GLAD) is performed to produce inorganic nanohelices (NHs) to generate CPLE with large gCPLE values. CdSe NHs emit red CPLE with gCPLE = 0.15 at a helical pitch (P) ≈ 570 nm, having a 40-fold amplification of gCPLE compared to that at P ≈ 160 nm. Ceria NHs emit ultraviolet-blue CPLE with gCPLE ≈ 0.06 at P ≈ 830 nm, with a 103-fold amplification compared to that at P ≈ 110 nm. Both the photoluminescence and scattering among the close-packed NHs complicatedly account for the large gCPLE values, as revealed by the numerical simulations. The GLAD-based NH-fabrication platform is devised to generate CPLE with engineerable color and large gCPLE = 10-2-10-1, shedding light on the commercialization of CPLE devices.
Collapse
Affiliation(s)
- Ziyue Ni
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Ping Qin
- Department
of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Hongshuai Liu
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Jiafei Chen
- School
of Science, Harbin Institute of Technology, Shenzhen 518055, People’s Republic of China
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic
of China
| | - Siyuan Cai
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Wenying Tang
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Hui Xiao
- Department
of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical
Energy Materials and Devices, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Chen Wang
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Geping Qu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, People’s
Republic of China
| | - Chao Lin
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong SAR 999077, People’s Republic
of China
| | - Zhiyong Fan
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Zong-Xiang Xu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Guixin Li
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic
of China
| | - Zhifeng Huang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, People’s Republic of China
| |
Collapse
|
3
|
Yang S, Zhang S, Hu F, Han J, Li F. Circularly polarized luminescence polymers: From design to applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Zou H, Liu W, Wang C, Zhou L, Liu N, Wu ZQ. Polyfluorene- block-poly(phenyl isocyanide) Copolymers: One-Pot Synthesis, Helical Assembly, and Circularly Polarized Luminescence. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wei Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin Province 130021, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province 130012, China
| |
Collapse
|
5
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
7
|
Shen X, Huang H, Qian H, Tang L, Zhang Y, Xu M, Wang H, Wang Z. Super Chirality Promotion of Helical Poly(Phenyl Isocyanide)s by Grafting onto Ethyl Cellulose. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Shen
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Hailong Huang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science East China Normal University Shanghai 200062 P. R. China
| | - Hao Qian
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Longxiang Tang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Yan Zhang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science East China Normal University Shanghai 200062 P. R. China
| | - Huiqing Wang
- Department of Polymer Science and Engineering School of Chemical Engineering Hefei University of Technology Anhui 230009 P. R. China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Material Science and Engineering Anhui Agricultural University Hefei Anhui 230036 P. R. China
| |
Collapse
|
8
|
Surface modification induced construction of core-shell homojunction of polymeric carbon nitride for boosted photocatalytic performance. J Colloid Interface Sci 2021; 594:64-72. [PMID: 33756369 DOI: 10.1016/j.jcis.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
Surface modification has been considered a simple and effective strategy to enhance the photocatalytic activity of polymeric carbon nitride (CN), but resultant difference of energy band structures between the modified surface layer and the unmodified inside in the sample has always been neglected. Herein, maleoyl-modified CN (MaCN) was simply prepared via a dehydration reaction between CN and maleic acid, and exhibits enhanced charge separation, optical absorption, and thus photocatalytic hydrogen evolution activity, relative to the bulk CN. The surface modification causes variation of the band structure, suggesting the difference of band levels between the surface layer with maleoyl-modification and the inside without any modification in MaCN, and the surface layer and the inside with matched band levels form type-II core-shell homojunction to enhance the charge separation. This work expounds a conceptual framework of core-shell homojunction in surface-modified CN photocatalysts.
Collapse
|
9
|
Construction of Supramolecular Chirality in Polymer Systems: Chiral Induction, Transfer and Application. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Kang SM, Xu XH, Xu L, Zhou L, Liu N, Wu ZQ. Highly 2,3-selective and fast living polymerization of alkyl-, alkoxy- and phenylallenes using nickel(ii) catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00482d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel Ni(ii) catalyst was developed to initiate the polymerization of various allene monomers efficiently in a fast and living/controlled manner, and the thermodynamic and crystallization properties of the polymers were investigated.
Collapse
Affiliation(s)
- Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
11
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
12
|
Fujiki M, Wang L, Ogata N, Asanoma F, Okubo A, Okazaki S, Kamite H, Jalilah AJ. Chirogenesis and Pfeiffer Effect in Optically Inactive Eu III and Tb III Tris(β-diketonate) Upon Intermolecular Chirality Transfer From Poly- and Monosaccharide Alkyl Esters and α-Pinene: Emerging Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). Front Chem 2020; 8:685. [PMID: 32903703 PMCID: PMC7438854 DOI: 10.3389/fchem.2020.00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters (D-/L-Glu), and D-/L-arabinose tetramethyl esters (D-/L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5D0→7F1) and −0.0059 at 613 nm (5D0→7F2), respectively, while those in CTA are +0.0463 and −0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are −0.0029 at 490 nm (5D4→7F6), +0.0078 at 540 nm (5D4→7F5), and −0.0018 at 552 nm (5D4→7F5), respectively, while those in CTA are −0.0053, +0.0037, and −0.0059 at these transitions, respectively. D-/L-Glu and D-/L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (–)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (–)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
Collapse
Affiliation(s)
- Michiya Fujiki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Laibing Wang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Nanami Ogata
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fumio Asanoma
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Asuka Okubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shun Okazaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroki Kamite
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Abd Jalil Jalilah
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,School of Materials Engineering, Universiti Malaysia Perlis, Jejawi, Malaysia.,Centre of Excellence Frontier Materials Research, Universiti Malaysia Perlis, Kangar, Malaysia
| |
Collapse
|
13
|
Qian H, Shen X, Huang H, Zhang Y, Zhang M, Wang H, Wang Z. Helical poly(phenyl isocyanide)s grafted selectively on C-6 of cellulose for improved chiral recognition ability. Carbohydr Polym 2019; 231:115737. [PMID: 31888853 DOI: 10.1016/j.carbpol.2019.115737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023]
Abstract
Cellulose graft copolymers are an effective way to endow new properties to cellulose substrate, as well the rigidity, regularity, and helicity of the cellulose backbone could induce the self-assembly of supramolecular structures. In this work, right-handed helical poly(phenyl isocyanide)s (PPIn) were grafted selectively onto C-6-cellulose. Alkyne-terminated PPIn was synthesized by living polymerization of right-handed phenyl isocyanide monomer using an alkyne-terminated palladium(II) complex as an initiator/catalyst, and were grafted onto the C-6 of the cellulose backbone (Cell-6-g-PPIn) at various chain lengths using copper-catalyzed alkyne-azide cycloaddition (CuAAC) "click" chemistry. We confirmed the successful grafting by liquid 1H NMR and 13C NMR, as well as solid 13C NMR, FTIR, and GPC. After grafting onto cellulose, the right-handed chirality of PPIn was significantly increased by 111.2%. Additionally, the Cell-6-g-PPIn exhibited better chiral recognition of L-Phe-DNSP than PPIn alone. Therefore, the helical cellulose backbone has enhanced effect on preferred helix of PPIn.
Collapse
Affiliation(s)
- Hao Qian
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Xiaofei Shen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Hailong Huang
- School of Physics and Materials Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No.43663 North Zhongshan Road, Shanghai, 200062, China
| | - Yan Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Mingtao Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China
| | - Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui, 230009, China.
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Material Science and Engineering, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
14
|
Wang F, Ji W, Yang P, Feng CL. Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Co-assembly with Achiral Coumarin Derivatives. ACS NANO 2019; 13:7281-7290. [PMID: 31150196 DOI: 10.1021/acsnano.9b03255] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Control over the handedness of circularly polarized luminescence (CPL) in supramolecular gels is of special significance in biology and optoelectronics; however, it still remains a great challenge to precisely and efficiently regulate the chirality of CPL. Herein, a chiral phenylalanine-derived hydrogelator and achiral coumarin derivatives can co-assemble into nanofibrous hydrogels with controllable chirality, and the handedness of CPL of these hydrogels can be efficiently inverted by coumarin derivatives through noncovalent interactions, which can be further tuned at will by incorporating metal ions into the co-assembly. The hydrogen bonds, coordination interactions, and steric hindrance are proved to be the crucial factors for the CPL inversion. This study provides feasible strategies to efficiently regulate the handedness of CPL through co-assembly, and these CPL materials may have potential applications in the fields of photoelectric devices, smart chiroptical materials, and biological systems.
Collapse
Affiliation(s)
- Fang Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, and School of Chemistry and Chemical Technology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wei Ji
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, and School of Chemistry and Chemical Technology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Peng Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, and School of Chemistry and Chemical Technology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Chuan-Liang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, and School of Chemistry and Chemical Technology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- Collaborative Innovation Center of Nano Function Materials & Application, Key Lab For Special Functional Materials, Ministry of Education , Henan University , Kaifeng 475004 , China
| |
Collapse
|
15
|
Mimura Y, Kitamura S, Shizuma M, Kitamatsu M, Imai Y. Circular dichroism and circularly polarised luminescence of bipyrenyl oligopeptides, with piperidines added in the peptide chains. Org Biomol Chem 2019; 16:8273-8279. [PMID: 30140836 DOI: 10.1039/c8ob01869c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Upon combining chiral peptides (the most basic chiral source) with pyrene moieties, we found that chiral oligopeptides bearing two-pendant pyrenyl units exhibited circularly polarised luminescence (CPL) originating from intramolecular excimers at 450-490 nm in various solvents, and the sign of their CPL signals depended on the type of solvent employed. The CPL and circular dichroism signs and intensities could be tuned by the introduction of a piperidine unit into the chiral peptide chain; thus, the obtained structure could be considered a practical Lock ON-OFF system for oligopeptide luminophores.
Collapse
Affiliation(s)
- Yuki Mimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | | | | | | | | |
Collapse
|
16
|
Chen H, Yin L, Liu M, Wang L, Fujiki M, Zhang W, Zhu X. Aggregation-induced chiroptical generation and photoinduced switching of achiral azobenzene- alt-fluorene copolymer endowed with left- and right-handed helical polysilanes. RSC Adv 2019; 9:4849-4856. [PMID: 35514644 PMCID: PMC9060682 DOI: 10.1039/c8ra09345h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
The left and right helicities of azobenzene (Azo)-containing main-chain polymer (PF8Azo) were successfully controlled with an enantiomeric pair of rigid rod-like helical polysilanes carrying (S)- and (R)-2-methylbutyl groups (PSi-S and PSi-R, respectively) as their hetero-aggregates in a mixture of chloroform and methanol solvents and in the solid state. Optimizing the good and poor cosolvents and their volume fractions showed that the molar ratio of PF8Azo to PSi-S/-R and the molecular weight of PF8Azo were crucial to boost the CD amplitudes of PF8Azo/PSi-S and PF8Azo/PSi-R hetero-aggregates. The photoresponsive trans-cis transformation caused noticeable changes in the sign and magnitude of the chiroptical behavior due to the hetero-aggregates. Moreover, the optically active PF8Azo homo-aggregates were produced by complete photoscissoring reactions at 313 nm, which could be assigned to the Siσ-Siσ* transitions of PSi-S and PSi-R.
Collapse
Affiliation(s)
- Hailing Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Meng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Laibing Wang
- Division of Materials Science, Nara Institute of Science and Technology 8946-5, Takayama Ikoma Nara 630-0192 Japan
| | - Michiya Fujiki
- Division of Materials Science, Nara Institute of Science and Technology 8946-5, Takayama Ikoma Nara 630-0192 Japan
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
- Global Institute of Software Technology No. 5 Qingshan Road, Suzhou National Hi-Tech District Suzhou 215163 China
| |
Collapse
|
17
|
Wada S, Kitagawa Y, Nakanishi T, Gon M, Tanaka K, Fushimi K, Chujo Y, Hasegawa Y. Electronic chirality inversion of lanthanide complex induced by achiral molecules. Sci Rep 2018; 8:16395. [PMID: 30401813 PMCID: PMC6219555 DOI: 10.1038/s41598-018-34790-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
A novel mechanism for chiroptical activity inversion based on the electronic structure of metal complexes without Λ- or Δ-type structure change was demonstrated spectroscopically and theoretically. To demonstrate the mechanism, a europium (Eu(III)) complex with chiral (+)-3-(trifluoroacetyl)camphor (+tfc) and achiral triphenylphosphine oxide (tppo) was prepared. The steric and electronic structures of the Eu(III) complex were adjusted by additional achiral tppo and coordinating acetone molecules, and were characterised by 1H NMR, photoluminescence, and emission lifetime measurements. The optical activity of the Eu(III) complex in solution was evaluated by circularly polarized luminescence (CPL) measurements. CPL sign inversion, which was independent of Λ- or Δ-type structure changes from the spectroscopic viewpoint, and a drastic CPL intensity enhancement were observed depending on the external achiral molecules around Eu(III) ion. These phenomena provide the first clarification of optical activity change associated with electronic structure rather than chiral coordination structure-type (Λ or Δ) under external environments.
Collapse
Affiliation(s)
- Satoshi Wada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Takayuki Nakanishi
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Masayuki Gon
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Yoshiki Chujo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
18
|
Yamazaki K, Nakao A, Suzuki N, Fujiki M. Molecular weight-dependent physisorption of non-charged poly(9,9-dioctylfluorene) onto the neutral surface of cuboidal γ-alumina in toluene. Polym J 2018. [DOI: 10.1038/s41428-018-0046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Yu H, Pan K, Deng J. Cellulose Concurrently Induces Predominantly One-Handed Helicity in Helical Polymers and Controls the Shape of Optically Active Particles Thereof. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Guo S, Kamite H, Suzuki N, Wang L, Ohkubo A, Fujiki M. Ambidextrous Chirality Transfer Capability from Cellulose Tris(phenylcarbamate) to Nonhelical Chainlike Luminophores: Achiral Solvent-Driven Helix-Helix Transition of Oligo- and Polyfluorenes Revealed by Sign Inversion of Circularly Polarized Luminescence and Circular Dichroism Spectra. Biomacromolecules 2018; 19:449-459. [PMID: 29220164 DOI: 10.1021/acs.biomac.7b01554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We investigated whether helicity and/or chirality of cellulose tris(phenylcarbamate) (CTPC) can transfer to noncharged, nonhelical oligo- and polyfluorenes when CTPC was employed as a solution processable homochiral platform of a D-glucose-skeletal polymer. Noticeably, CTPC revealed the solvent-driven, ambidextrous intermolecular helicity/chirality transfer capability to these fluorenes. The chiroptical inversion characteristics of circularly polarized luminescence (CPL) and the corresponding CD spectra were realized by solely choosing a proper achiral solvent and/or achiral cosolvent. When the solution of PF6 and CTPC in tetrahydrofuran (THF) was cast on a quartz substrate, the dissymmetry ratio of CPL (gCPL) from the polymer film showed gCPL = +2.1 × 10-3 at 429 nm. Conversely, when dichloromethane (DCM) was used as the solvent, the CPL sign was inverted to gCPL = -2.4 × 10-3 at 429 nm. The dissymmetry ratio of Cotton CD band (gCD) from the THF solution was gCD = +3.2 × 10-3 at 392 nm; conversely, from the DCM, the CD sign inverted to gCD = -0.8 × 10-3 at 371 nm. The sign and magnitude of the gCD values were interpreted to a London dispersion term (δd) of Hansen solubility parameter (δ) of the casting solvents rather than a dipole-dipole interaction term (δp) and a hydrogen bonding interaction term (δh) of the δ values and dielectric constant (ε). Analysis of solvent-driven changes in FTIR spectra, wide-angle X-ray diffraction profiles, and differential scanning calorimetry diagrams indicated that solvent driven on-off switching of multiple hydrogen bonds due to three urethane groups of CTPC play the key for the inversion. Intermolecular CH/π and π-π interactions among phenyl rings and alkyl groups were assumed to be crucial for helicity/chirality transfer capability based on molecular mechanics and molecular dynamics simulations of PF6-CTPC hybrids. These chiroptical inversion characteristics arose from solvent-driven order-disorder transition characteristics of the CTPC helix rather than a helix-helix transition of CTPC itself.
Collapse
Affiliation(s)
- Sibo Guo
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroki Kamite
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nozomu Suzuki
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.,Department of Chemistry, College of Science, Rikkyo University , 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Laibing Wang
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Asuka Ohkubo
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Michiya Fujiki
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
21
|
Li J, Peng X, Huang C, Qi Q, Lai WY, Huang W. Control of circularly polarized luminescence from a boron ketoiminate-based π-conjugated polymer via conformational locks. Polym Chem 2018. [DOI: 10.1039/c8py01209a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circularly polarized luminescence from a boron ketoiminate-based π-conjugated polymer was successfully realized at the unimolecular level via conformational locks that blocked the intramolecular rotations.
Collapse
Affiliation(s)
- Junfeng Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Xuelei Peng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Chao Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Qi Qi
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
22
|
Liu J, Zhao Y, Chen H, Zhang Z, Zhang W, Zhu X. Rapid limonene-induced mirror symmetry breaking in achiral polyfluorene containing pendant crown ether groups: Enhanced by ion complexation. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zhang L, Cui Z, Fu P, Liu M, Pang X, Zhao Q. Facile Synthesis and Enhanced Aggregation-Induced Circular Dichroism of Novel Chiral Polyamides. ACS OMEGA 2017; 2:4080-4087. [PMID: 31457709 PMCID: PMC6641766 DOI: 10.1021/acsomega.7b00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/11/2017] [Indexed: 06/10/2023]
Abstract
A series of optically active polyamides, PAnLATs (n = 9-12), were prepared by polycondensation of l-tartrate-derived diacid with achiral aliphatic diamines in which the number of the methylene is from 9 to 12. The monomers could be obtained easily, and the synthesis of the polyamides is facile. The number-average molecular weight (M̅ n) of PA9LAT, PA10LAT, PA11LAT, and PA12LAT is 35 500, 24 400, 35 800, and 20 900 g/mol, respectively, and the related polydispersity index is 3.4, 3.3, 3.4, and 3.0. These polyamides display intense optical activity in solution. Particularly, the stronger ellipticities and different circular dichroism (CD) images were presented when the polymers were evaluated in the solid state. The crystalline properties of the polymers were studied to illuminate the enhanced aggregation-induced CD. Moreover, PA9LAT and PA11LAT have similar crystal parameters, and PA10LAT is similar to PA12LAT, which revealed why the chirality of the polyamides displays an odd-even effect. On the other hand, the solubility of the polymers in organic solvents was studied, and thermogravimetric-differential thermal analyzer was utilized to characterize the thermal properties.
Collapse
Affiliation(s)
- Lingli Zhang
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
- Department
of Biological Engineering, Zhengzhou Technical
College, Zhengzhou 450121, China
| | - Zhe Cui
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Peng Fu
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Minying Liu
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Xinchang Pang
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Qingxiang Zhao
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| |
Collapse
|