1
|
Shen T, Deng K, Chen Y, He Y, Zhu Y, Xu J, Ling J. Multiblock Poly-ε-Caprolactones: One-Step Synthesis toward Programmable Properties. Macromol Rapid Commun 2023; 44:e2300397. [PMID: 37821120 DOI: 10.1002/marc.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Control of monomer sequence enables predictable structure-property relationships in versatile polymeric materials. The facile synthesis of multiblock copolymers (MBCPs) with controlled chain structure is highly challenging, particularly for those prepared via one-pot copolymerization of mixed monomers. Herein, poly-ε-caprolactone MBCPs, a series of thermoplastic elastomers with tailored thermal, mechanical, rheological, and degradable properties, are synthesized by Janus polymerization. Melting temperature, tensile strength, ductility, viscosity, and enzymatic degradability are governed by block length which is in turn dictated by the monomer-to-catalyst feed ratio. The relationships between the physicochemical properties and the architectures are investigated in detail.
Collapse
Affiliation(s)
- Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Ferrier RC, Kumbhar G, Crum-Dacon S, Lynd NA. A guide to modern methods for poly(thio)ether synthesis using Earth-abundant metals. Chem Commun (Camb) 2023; 59:12390-12410. [PMID: 37753731 DOI: 10.1039/d3cc03046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Polyethers and polythioethers have a long and storied history dating back to the start of polymer science as a distinct field. As such, these materials have been utilized in a wide range of commercial applications and fundamental studies. The breadth of their material properties and the contexts in which they are applied is ultimately owed to their diverse monomer pre-cursors, epoxides and thiiranes, respectively. The facile polymerization of these monomers, both historically and contemporaneously, across academia and industry, has occurred through the use of Earth-abundant metals as catalysts and/or initiators. Despite this, polymerization methods for these monomers are underutilized compared to other monomer classes like cyclic olefins, vinyls, and (meth)acrylates. We feel a focused review that clearly outlines the benefits and shortcomings of extant synthetic methods for poly(thio)ethers along with their proposed mechanisms and quirks will help facilitate the utilization of these methods and by extension the unique polymer materials they create. Therefore, this Feature Article briefly describes the applications of poly(thio)ethers before discussing the feature-set of each poly(thio)ether synthetic method and qualitatively scoring them on relevant metrics (e.g., ease-of-use, molecular weight control, etc.) to help would-be poly(thio)ether-makers find an appropriate synthetic approach. The article is concluded with a look ahead at the future of poly(thio)ether synthesis with Earth-abundant metals.
Collapse
Affiliation(s)
- Robert C Ferrier
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Gouree Kumbhar
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Shaylynn Crum-Dacon
- Michigan State University, Department of Chemical Engineering and Materials Science, East Lansing MI, USA.
| | - Nathaniel A Lynd
- University of Texas-Austin, McKetta Department of Chemical Engineering, Austin, TX, USA
| |
Collapse
|
3
|
Wang X, Huo Z, Xie X, Shanaiah N, Tong R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem Asian J 2023; 18:e202201147. [PMID: 36571563 DOI: 10.1002/asia.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Narasimhamurthy Shanaiah
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, 24061, Blacksburg, VA, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| |
Collapse
|
4
|
Zhu C, Pedretti BJ, Kuehster L, Ganesan V, Sanoja GE, Lynd NA. Ionic Conductivity, Salt Partitioning, and Phase Separation in High-Dielectric Contrast Polyether Blends and Block Polymer Electrolytes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Congzhi Zhu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J. Pedretti
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Louise Kuehster
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel E. Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Xia X, Gao T, Li F, Suzuki R, Isono T, Satoh T. Sequential Polymerization from Complex Monomer Mixtures: Access to Multiblock Copolymers with Adjustable Sequence, Topology, and Gradient Strength. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaochao Xia
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
6
|
Xia X, Gao T, Li F, Suzuki R, Isono T, Satoh T. Multidimensional Control of Repeating Unit/Sequence/Topology for One-Step Synthesis of Block Polymers from Monomer Mixtures. J Am Chem Soc 2022; 144:17905-17915. [PMID: 36150017 DOI: 10.1021/jacs.2c06860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synchronously and thoroughly adjusting the chemical structure difference between two blocks of the diblock copolymer is very useful for designing materials but difficult to achieve via self-switchable alternating copolymerization. Here, we report self-switchable alternating copolymerization from a mixture of two different cyclic anhydrides, epoxides, and oxetanes, where a simple alkali metal carboxylate catalyst switches between ring-opening alternating copolymerization (ROCOP) of cyclic anhydrides/epoxides and ROCOP of cyclic anhydrides/oxetanes, resulting in the formation of a perfect block tetrapolymer. By investigating the reactivity ratio of these comonomers, a reactivity gradient was established, enabling the precise synthesis of block copolymers with synchronous adjustment of each unit's chemical structure/sequence/topology. Consequently, a diblock tetrapolymer with two glass transition temperatures (Tg) can be easily produced by adjusting the difference in chemical structures between the two blocks.
Collapse
Affiliation(s)
- Xiaochao Xia
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.,Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
7
|
Zhu C, Burkey AA, Adams CP, Uruchurtu Patino D, Lynd NA. Concurrent Ring-Opening/Ring-Closing Polymerization of Glycidyl Acetate to Acid-Degradable Poly(ether- co-orthoester) Materials Using a Mono(μ-alkoxo)bis(alkylaluminum) Initiator. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Liu J, Gnanou Y, Feng X. Expanding the Scope of Boron-Based Ate Complexes by Manipulating Their Reactivity: The Case of Cyclic Esters and Their (Co)Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingjing Liu
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring-Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022; 61:e202104495. [PMID: 34015162 PMCID: PMC9298364 DOI: 10.1002/anie.202104495] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Heteroatom-containing polymers have strong potential as sustainable replacements for petrochemicals, show controllable monomer-polymer equilibria and properties spanning plastics, elastomers, fibres, resins, foams, coatings, adhesives, and self-assembled nanostructures. Their current and future applications span packaging, house-hold goods, clothing, automotive components, electronics, optical materials, sensors, and medical products. An interesting route to these polymers is the catalysed ring-opening copolymerisation (ROCOP) of heterocycles and heteroallenes. It is a living polymerization, occurs with high atom economy, and creates precise, new polymer structures inaccessible by traditional methods. In the last decade there has been a renaissance in research and increasing examples of commercial products made using ROCOP. It is better known in the production of polycarbonates and polyesters, but is also a powerful route to make N-, S-, and other heteroatom-containing polymers, including polyamides, polycarbamates, and polythioesters. This Review presents an overview of the different catalysts, monomer combinations, and polymer classes that can be accessed by heterocycle/heteroallene ROCOP.
Collapse
Affiliation(s)
- Alex J. Plajer
- Oxford ChemistryChemical Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
10
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring‐Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alex J. Plajer
- Oxford Chemistry Chemical Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | |
Collapse
|
11
|
Lai T, Zhang P, Zhao J, Zhang G. Simple and Precision Approach to Polythioimidocarbonates and Hybrid Block Copolymer Derivatives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Lai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengfei Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Shukla G, Ferrier RC. The versatile, functional polyether, polyepichlorohydrin: History, synthesis, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Geetanjali Shukla
- Department of Chemical Engineering and Materials Science Michigan State University East Lansing Michigan USA
| | - Robert C. Ferrier
- Department of Chemical Engineering and Materials Science Michigan State University East Lansing Michigan USA
| |
Collapse
|
13
|
Dai WT, Tsai CY, Su YC, Ko BT. Ionic cobalt complexes derived from an amine-bis(benzotriazole phenolate) ligand as bifunctional catalysts for copolymerization of epoxides and anhydrides. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Diaz C, Tomković T, Goonesinghe C, Hatzikiriakos SG, Mehrkhodavandi P. One-Pot Synthesis of Oxygenated Block Copolymers by Polymerization of Epoxides and Lactide Using Cationic Indium Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Carlos Diaz
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tanja Tomković
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chatura Goonesinghe
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Savvas G. Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Ghosh S, Glöckler E, Wölper C, Tjaberings A, Gröschel AH, Schulz S. Active Ga-catalysts for the ring opening homo- and copolymerization of cyclic esters, and copolymerization of epoxide and anhydrides. Dalton Trans 2020; 49:13475-13486. [PMID: 32966460 DOI: 10.1039/d0dt02831b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of gallium complexes L12Ga4Me8 (1), L22Ga4Me8 (2), and L32Ga4Me8 (3) was synthesized by reaction of GaMe3 with Schiff base ligands L1-3H2 (L1H2 = 2,4-di-tert-butyl-6-{[(3-hydroxypropyl)imino]methyl}phenol; L2H2 = 2,4-dichloro-6-{[(3-hydroxypropyl)imino]methyl}phenol; L3H2 = 4-tert-butyl-2-{[(3-hydroxypropyl)imino]methyl}phenol) and characterized by 1H, 13C NMR, IR spectroscopy, elemental analysis and single crystal X-ray analysis (1, 2), proving their tetranuclear structure in the solid state. Complexes 1-3 showed good catalytic activity in the ring opening homopolymerization (ROP) and ring opening copolymerization (ROcoP) of lactide (LA) and ε-caprolactone (ε-CL) in the presence of benzyl alcohol (BnOH) in toluene at 100 °C, yielding polymers with the expected average molecular weights (Mn) and narrow molecular weight distributions (MWD), as well as a high isoselectivity for the ROP of rac-lactide (rac-LA), yielding isotactic-enriched PLAs with Pm values up to 0.78. Kinetic studies with complex 1 proved the first order dependence on monomer concentration, while mechanistic studies confirmed the coordination insertion mechanistic (CIM) pathway. Sequential addition of monomers gave well defined diblock copolymers of PCL-b-PLLA and PLLA-b-PCL, proving the living character of the polymerization reactions. The catalysts also showed perfect selectivity for the copolymerization of cyclohexene oxide (CHO) with both succinic anhydride (SA) and maleic anhydride (MA) in the presence of BnOH and produced >99% alternating block copolymers.
Collapse
Affiliation(s)
- Swarup Ghosh
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, S07 S03 C30, D-45141 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Koh JH, Zhu Q, Asano Y, Maher MJ, Ha H, Kim SS, Cater HL, Mapesa EU, Sangoro JR, Ellison CJ, Lynd NA, Willson CG. Unusual Thermal Properties of Certain Poly(3,5-disubstituted styrene)s. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Michael J. Maher
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Heonjoo Ha
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sung-Soo Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Emmanuel U. Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Joshua R. Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Christopher J. Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
17
|
Mechanism-inspired Design of Heterodinuclear Catalysts for Copolymerization of Epoxide and Lactone. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2413-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Deacy AC, Durr CB, Williams CK. Heterodinuclear complexes featuring Zn(ii) and M = Al(iii), Ga(iii) or In(iii) for cyclohexene oxide and CO 2 copolymerisation. Dalton Trans 2019; 49:223-231. [PMID: 31815257 DOI: 10.1039/c9dt02918d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ring opening copolymerisation of CO2 and epoxides is a useful means to valorise waste emissions and to reduce pollution in polymer manufacturing. Heterodinuclear catalysts, particularly those of Zn(ii)/Mg(ii), have shown better performances than homodinuclear analogues in this reaction. As part of on-going efforts to better understand the catalytic synergy, this work describes a series of heterodinuclear complexes, combining Zn(ii) with a metal from Group 13 (M = Al(iii), Ga(iii) or In(iii)). The complexes are synthesised from a symmetrical macrocyclic ligand in high yields via sequential metalation steps and are the thermodynamic reaction products. The Zn(ii)/Group 13 complexes are effective homogeneous catalysts for the ring opening copolymerisation (ROCOP) of cyclohexene oxide at 1 bar pressure of carbon dioxide, but all show inferior performances compared to the di-zinc analogue. The CO2 uptake into the polymer increases in the order Al(iii) < Ga(iii) < In(iii) which is attributed to lower Lewis acidity heavier Group 13 homologues showing a reduced tendency to form ether linkages. Concurrently, polycarbonate activity increases down the Group 13 series consistent with weaker metal-oxygen bonds which show enhanced lability to insertion reactions.
Collapse
Affiliation(s)
- Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| | | | | |
Collapse
|
19
|
Diaz C, Ebrahimi T, Mehrkhodavandi P. Cationic indium complexes for the copolymerization of functionalized epoxides with cyclic ethers and lactide. Chem Commun (Camb) 2019; 55:3347-3350. [PMID: 30815641 DOI: 10.1039/c8cc08858f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the first example of discrete cationic indium complexes for the copolymerization of epoxides, cyclic ethers, and lactide. [SalenIn][SbF6] in particular proved to be a highly active catalyst for the homo-polymerization of functionalized epoxides and their copolymerization with other cyclic ethers THF, oxetane and oxepane. This catalyst also proved competent in the polymerization of epichlorohydrin and lactide, forming copolymers with good activity and control. Investigation of the role of counteranions and solvent donors on the kinetics of polymerization of epoxides revealed a subtle effect of solvents on initiation rates.
Collapse
Affiliation(s)
- Carlos Diaz
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | | | | |
Collapse
|
20
|
Lynd NA, Ferrier RC, Beckingham BS. Recommendation for Accurate Experimental Determination of Reactivity Ratios in Chain Copolymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01752] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert C. Ferrier
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bryan S. Beckingham
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
21
|
Varghese JK, Hadjichristidis N, Gnanou Y, Feng X. Degradable poly(ethylene oxide) through metal-free copolymerization of ethylene oxide with l-lactide. Polym Chem 2019. [DOI: 10.1039/c9py00605b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A simple and convenient method for the preparation of degradable poly(ethylene oxide) (PEO) is presented in this work.
Collapse
Affiliation(s)
- Jobi Kodiyan Varghese
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
- Kingdom of Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Kingdom of Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Hua X, Liu X, Cui D. Sequence controlled copolymerization of lactide and a functional cyclic carbonate using stereoselective aluminum catalysts. Polym Chem 2019. [DOI: 10.1039/c9py00424f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stereoselective aluminum complexes were applied for the ROP of LA and MAC producing functional copolyesters with quasi-diblock, tapered, gradient and random sequence distributions.
Collapse
Affiliation(s)
- Xiufang Hua
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
23
|
Clayman NE, Morris LS, LaPointe AM, Keresztes I, Waymouth RM, Coates GW. Dual catalysis for the copolymerisation of epoxides and lactones. Chem Commun (Camb) 2019; 55:6914-6917. [DOI: 10.1039/c9cc00493a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using a dual catalysis approach, epoxide/lactone copolymers were synthesized with control over tacticity, molecular weight, crystallinity, and comonomer content.
Collapse
Affiliation(s)
- Naomi E. Clayman
- Department of Chemistry, Stanford University
- Stanford
- California 94305-5080
- USA
| | | | - Anne M. LaPointe
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University
- Stanford
- California 94305-5080
- USA
| | | |
Collapse
|
24
|
Ferrier RC, Pakhira S, Palmon SE, Rodriguez CG, Goldfeld DJ, Iyiola OO, Chwatko M, Mendoza-Cortes JL, Lynd NA. Demystifying the Mechanism of Regio- and Isoselective Epoxide Polymerization Using the Vandenberg Catalyst. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robert C. Ferrier
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Srimanta Pakhira
- Department of Chemical & Biomedical Engineering, Florida A&M University and Florida State University, Joint College of Engineering, Tallahassee, Florida 32310, United States
| | - Sarah E. Palmon
- Department of Chemical & Biomedical Engineering, Florida A&M University and Florida State University, Joint College of Engineering, Tallahassee, Florida 32310, United States
| | - Christina G. Rodriguez
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David J. Goldfeld
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Oluwagbenga O. Iyiola
- Department of Chemical & Biomedical Engineering, Florida A&M University and Florida State University, Joint College of Engineering, Tallahassee, Florida 32310, United States
| | - Malgorzata Chwatko
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jose L. Mendoza-Cortes
- Department of Chemical & Biomedical Engineering, Florida A&M University and Florida State University, Joint College of Engineering, Tallahassee, Florida 32310, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Isnard F, Carratù M, Lamberti M, Venditto V, Mazzeo M. Copolymerization of cyclic esters, epoxides and anhydrides: evidence of the dual role of the monomers in the reaction mixture. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01174e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A block copolyester derived from ROCOP of CHO/SA followed by ROP of ε-CL was obtained from the mixture of monomers. The lactone comonomer acts as an endogen cocatalyst during the SA/CHO ROCOP step and as a monomer during ROP.
Collapse
Affiliation(s)
- Florence Isnard
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 84084 Fisciano (SA)
- Italy
| | - Mario Carratù
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 84084 Fisciano (SA)
- Italy
| | - Marina Lamberti
- Department of Physics “E. Caianiello”
- University of Salerno
- 132 84084 Fisciano (SA)
- Italy
| | - Vincenzo Venditto
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 84084 Fisciano (SA)
- Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology “A. Zambelli”
- University of Salerno
- 84084 Fisciano (SA)
- Italy
| |
Collapse
|
26
|
|