1
|
Pallaka MR, Simon SL. The glass transition and enthalpy recovery of polystyrene nanorods using Flash differential scanning calorimetry. J Chem Phys 2024; 160:124904. [PMID: 38533885 DOI: 10.1063/5.0190076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 03/28/2024] Open
Abstract
The glass transition (Tg) behavior and enthalpy recovery of polystyrene nanorods within an anodic aluminum oxide (AAO) template (supported nanorods) and after removal from AAO (unsupported nanorods) is studied using Flash differential scanning calorimetry. Tg is found to be depressed relative to the bulk by 20 ± 2 K for 20 nm-diameter unsupported polystyrene (PS) nanorods at the slowest cooling rate and by 9 ± 1 K for 55 nm-diameter rods. On the other hand, bulk-like behavior is observed in the case of unsupported 350 nm-diameter nanorods and for all supported rods in AAO. The size-dependent Tg behavior of the PS unsupported nanorods compares well with results for ultrathin films when scaled using the volume/surface ratio. Enthalpy recovery was also studied for the 20 and 350 nm unsupported nanorods with evolution toward equilibrium found to be linear with logarithmic time. The rate of enthalpy recovery for the 350 nm rods was similar to that for the bulk, whereas the rate of recovery was enhanced for the 20 nm rods for down-jump sizes larger than 17 K. A relaxation map summarizes the behavior of the nanorods relative to the bulk and relative to that for the 20 nm-thick ultrathin film. Interestingly, the fragility of the 20 nm-diameter nanorod and the 20 nm ultrathin film are identical within the error of measurements, and when plotted vs departure from Tg (i.e., T - Tg), the relaxation maps of the two samples are identical in spite of the fact that the Tg is depressed 8 K more in the nanorod sample.
Collapse
Affiliation(s)
- Madhusudhan R Pallaka
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Sindee L Simon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
2
|
Yoon H, Heinzman J, Smith SE, Gopinadhan M, Edmond KV, Clingenpeel AC, Alvarez NJ. Highly stable petroleum pitches provide access to the deep glassy state. SOFT MATTER 2023. [PMID: 38037425 DOI: 10.1039/d3sm01246h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Differential scanning calorimetry (DSC) was used to study the fast aging behavior of two petroleum pitch materials despite being only three to five years old. We observe that these highly aromatic pitches with broad distributions of both molecular weight and aromaticity exhibit large enthalpic relaxation endotherms in initial DSC heating scans, and 20-32 °C reductions in the fictive temperature and 0.35-0.87 of θK, which are indicative of aged glasses similar to ultrastable glasses and 20 MA aged amber. Quantifying the degree of thermodynamic stability relative to the Kauzmann temperature vs. the aging time demonstrates that these materials age just as quickly as low fragility metallic glasses. Additionally, we observe that pitches age faster than polymers reported in the literature when compared using down-jump experiments. We hypothesize that the fraction of higher aromaticity of pitch molecules plays a crucial role in faster dynamics. The unique aging behavior and the ability to produce pitches in bulk quantities using pilot-scale equipment, while being possible to tailor their molecular composition, make them a useful material for studying complex aging dynamics in the deep glassy state.
Collapse
Affiliation(s)
- Heedong Yoon
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - James Heinzman
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Stuart E Smith
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Manesh Gopinadhan
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Kazem V Edmond
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Amy C Clingenpeel
- ExxonMobil Technology and Engineering Company, Annandale, NJ 08801, USA
| | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
El Banna AA, McKenna GB. Challenging the Kauzmann paradox using an ultra-stable perfluoropolymer glass with a fictive temperature below the dynamic VFT temperature. Sci Rep 2023; 13:4224. [PMID: 36918591 PMCID: PMC10014873 DOI: 10.1038/s41598-023-31074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Ultra-stable fluoropolymer glasses were created using vacuum pyrolysis deposition that show large fictive temperature Tf reductions relative to the glass transition temperature Tg of the rejuvenated material. Tf was also found to be 11.4 K below the dynamic VFT temperature TVFT. Glass films with various thickness (200-1150 nm) were deposited onto different temperature substrates. Glassy films were characterized using rapid-chip calorimetry, Fourier-transform infrared spectroscopy and intrinsic viscosity measurements. Large enthalpy overshoots were observed upon heating and a Tf reduction of 62.6 K relative to the Tg of 348 K was observed. This reduction exceeds values reported for a 20-million-year-old amber and another amorphous fluoropolymer and is below the putative Kauzmann temperature TK for the material as related to TVFT. These results challenge the importance of the Kauzmann paradox in glass-formation and illustrates a powerful method for the exploration of material dynamics deep in the glassy state (Tf < T < Tg).
Collapse
Affiliation(s)
| | - Gregory B McKenna
- Texas Tech University, Lubbock, TX, USA. .,North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Wang H, Zhang L, Peh KWE, Yu Q, Lu Y, Hua W, Men Y. Effect of Phase Separation and Crystallization on Enthalpy Relaxation in Thermoplastic Polyurethane. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongru Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Zhang
- BASF Polyurethane Specialties (China) Co. Ltd., 300 Jiang Xin Sha Road, Pudong
District, Shanghai 200137, P. R. China
| | - Kar Wee Eddie Peh
- BASF Polyurethane Specialties (China) Co. Ltd., 300 Jiang Xin Sha Road, Pudong
District, Shanghai 200137, P. R. China
| | - Qianli Yu
- BASF Polyurethane Specialties (China) Co. Ltd., 300 Jiang Xin Sha Road, Pudong
District, Shanghai 200137, P. R. China
| | - Ying Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
| | - Wenqiang Hua
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Yongfeng Men
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Origin of the broad endothermic peak observed at low temperatures for polystyrene and metals in Flash differential scanning calorimetry*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H, Wang WH. Ultrastable metallic glass by room temperature aging. SCIENCE ADVANCES 2022; 8:eabn3623. [PMID: 35977009 PMCID: PMC9385139 DOI: 10.1126/sciadv.abn3623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Glasses have markedly different stability around their glass transition temperature (Tg), and metallic glasses (MGs) are conventionally regarded as metastable compared to other glasses such as silicate glass or amber. Here, we show an aging experiment on a Ce-based MG around its Tg (~0.85Tg) for more than 17 years. We find that the MG with strong fragility could transform into kinetic and thermodynamic hyperstable state after the long-term room temperature aging and exhibits strong resistance against crystallization. The achieved hyperstable state is closer to the ideal glass state compared with that of other MGs and similar to that of the million-year-aged amber, which is attributed to its strong fragility and strong resistance against nucleation. It is also observed through the asymmetrical approaching experiment that the hyperaged Ce-based MG can reach equilibrium liquid state below Tg without crystallization, which supports the idea that nucleation only occurs after the completion of enthalpy relaxation.
Collapse
Affiliation(s)
- Yong Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Baoshuang Shang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bo Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Corresponding author. (B.Z.); (H.K.); (H.B.)
| | - Xing Tong
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Haibo Ke
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Corresponding author. (B.Z.); (H.K.); (H.B.)
| | - Haiyang Bai
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Corresponding author. (B.Z.); (H.K.); (H.B.)
| | - Wei-Hua Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Lopez E, Koh YP, Zapata‐Hincapie JA, Simon SL. Composition‐dependent
glass transition temperature in mixtures: Evaluation of configurational entropy models*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Evelyn Lopez
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Yung P. Koh
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | | | - Sindee L. Simon
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
8
|
McKenna GB, Chen D, Mangalara SCH, Kong D, Banik S. Some open challenges in polymer physics*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gregory B. McKenna
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - Dongjie Chen
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | | | - Dejie Kong
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Sourya Banik
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| |
Collapse
|
9
|
Kong D, Meng Y, McKenna GB. Determination of the molecular weight between cross‐links for different ambers: Viscoelastic measurements of the rubbery plateau*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dejie Kong
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Yan Meng
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Gregory B. McKenna
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
10
|
Han Y, Roth CB. Gradient in refractive index reveals denser near free surface region in thin polymer films. J Chem Phys 2021; 155:144901. [PMID: 34654302 DOI: 10.1063/5.0062054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A gradient in refractive index that is linear in magnitude with depth into the film is used to fit ellipsometric data for thin polymer films of poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(2-vinyl pyridine) (P2VP). We find that the linear gradient model fits provide more physically realistic refractive index values for thin films compared with the commonly used homogeneous Cauchy layer model, addressing recent reports of physically unrealistic density increases. Counter to common expectations of a simple free volume correlation between density and dynamics, we find that the direction of refractive index (density) gradient indicates a higher density near the free surface, which we rationalize based on the observed faster free surface dynamics needed to create vapor deposited stable glasses with optimized denser molecular packings. The magnitude of refractive index gradient is observed to be three times larger for PMMA than for PS films, while P2VP films exhibit a more muted response possibly reflective of a decoupling in free surface and substrate dynamics in systems with strong interfacial interactions.
Collapse
Affiliation(s)
- Yixuan Han
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
11
|
Yoon H, Hinton ZR, Heinzman J, Chase CE, Gopinadhan M, Edmond KV, Ryan DJ, Smith SE, Alvarez NJ. The effect of pyrolysis on the chemical, thermal and rheological properties of pitch. SOFT MATTER 2021; 17:8925-8936. [PMID: 34546280 DOI: 10.1039/d1sm00594d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pitch-based carbon fibers are of considerable interest as high-performance materials. There are reports over the last several decades detailing (i) methods of improving pitch-based carbon fiber performance, and (ii) reducing the cost of production via novel processing techniques. However, there remain considerable challenges in producing high-performance pitch-based carbon fibers consistently on an industrial scale. This is arguably due to the difficulty of scaling the melt-spinning process to compensate for variability in pitch feedstock quality and a lack of understanding of processing-structure-performance relationships. This work focuses on the early stages of heat treatment (pyrolysis) of isotropic pitch and its effect on the chemical, thermal, and rheological properties of the pitch, which help determine its processability. More specifically, we quantify significant changes in chemical structure, Mw, Tg, Ts, and shear and extensional rheology as a function of pyrolysis time at 400 °C. The extensional rheology, in particular, shows that the 'stretchability' of the pitch samples strongly depends on pyrolysis severity, and is important for characterizing 'drawability'. Using a novel analysis of the uniaxial stretching kinematics, we show an isothermal 'drawability window' that allows for the largest axial and radial Hencky strains at constant rate. We hypothesize that this extensional drawability window could facilitate the successful processing of pitch into high quality fiber, minimizing the trial-and-error approach currently used in the field.
Collapse
Affiliation(s)
- Heedong Yoon
- Chemical and Biological Engineering Department, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Zachary R Hinton
- Chemical and Biological Engineering Department, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.
| | - James Heinzman
- Chemical and Biological Engineering Department, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Clarence E Chase
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 E., Annandale, NJ, 08801, USA
| | - Manesh Gopinadhan
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 E., Annandale, NJ, 08801, USA
| | - Kazem V Edmond
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 E., Annandale, NJ, 08801, USA
| | - Daniel J Ryan
- Analytical Sciences Laboratory, ExxonMobil Research and Engineering Company, 1545 Route 22 E., Annandale, NJ, 08801, USA
| | - Stuart E Smith
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 E., Annandale, NJ, 08801, USA
| | - Nicolas J Alvarez
- Chemical and Biological Engineering Department, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Raegen AN, Yin J, Zhou Q, Forrest JA. Ultrastable monodisperse polymer glass formed by physical vapour deposition. NATURE MATERIALS 2020; 19:1110-1113. [PMID: 32632279 DOI: 10.1038/s41563-020-0723-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Stable glasses prepared by vapour deposition are an analogue of glassy materials aged for geological timescales. The ability to prepare such materials allows the study of near-ideal glassy systems. We report the preparation and characterization of stable glasses of polymers prepared by physical vapour deposition. By controlling the substrate temperature, deposition rate and polydispersity, we prepared and characterized a variety of stable polymer glasses. These materials display the kinetic stability, low fictive temperatures and high-density characteristic of stable glasses. Extrapolation of the measured transformation times between the stable and normal glass provides estimates of the relaxation times of the equilibrium supercooled liquid at temperatures as much as 30 K below the glass transition temperature. These results demonstrate that polymer stable glasses are an exciting and powerful tool in the study of ultrastable glass and disordered materials in general.
Collapse
Affiliation(s)
- Adam N Raegen
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Junjie Yin
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
| | - Qi Zhou
- Department of Physics & Astronomy and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
- School of Science, Beijing Jiaotong University, Beijing, China
| | - James A Forrest
- Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario, Canada.
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada.
| |
Collapse
|
13
|
Monnier X, Delpouve N, Saiter-Fourcin A. Distinct dynamics of structural relaxation in the amorphous phase of poly(l-lactic acid) revealed by quiescent crystallization. SOFT MATTER 2020; 16:3224-3233. [PMID: 32162627 DOI: 10.1039/c9sm02541c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fast scanning calorimetry (FSC) experiments were performed to investigate physical aging in amorphous and semi-crystalline poly(l-lactic acid)s (PLLAs) that were thermally crystallized under conditions leading to the α'- or α-crystalline form, and either favouring or inhibiting the development of a rigid amorphous fraction (RAF). The enthalpy of recovery was calculated after two procedures of rescaling to the content of the whole amorphous phase and also to the only content of the mobile amorphous fraction (MAF), which helped in clarifying the contribution of the RAF. From the dependence of the structural relaxation rate on the aging temperature, two regimes were evidenced for all samples. In the aging temperature domain situated close to the glass transition, the structural relaxation occurs significantly faster in the MAF. Its rate is independent of the aging temperature and is not influenced by the microstructure. However, the distance to equilibrium is higher in samples for which the coupling is strong between crystal and amorphous, implying that the time to reach equilibrium is also higher. In contrast, at low aging temperatures, for which the whole amorphous phase can be considered as solid, MAF and RAF exhibit the same structrural relaxation rate. This convergence in the relaxation kinetics by decreasing the temperature of physical aging was interpreted as the evolution of relaxation dynamics in the MAF from segmental to local. This change is highlighted by the comparison between MAF and RAF relaxation kinetics, but it occurs similarly in a pure amorphous system.
Collapse
Affiliation(s)
- Xavier Monnier
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France.
| | - Nicolas Delpouve
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France.
| | - Allisson Saiter-Fourcin
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France.
| |
Collapse
|
14
|
McKenna GB. LOOKING AT THE GLASS TRANSITION: CHALLENGES OF EXTREME TIME SCALES AND OTHER INTERESTING PROBLEMS. RUBBER CHEMISTRY AND TECHNOLOGY 2020. [DOI: 10.5254/rct.20.80376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACTThe behavior of glass-forming materials is examined with emphasis on the below-glass transition behavior. A major question that is related to the super-Arrhenius behavior of the dynamics of glass-forming systems is whether the apparent divergence at finite temperature continues below the kinetic or laboratory glass transition that is related to the limits of measurement and is standardized so that the material relaxation time is near 100 s. The problem arises because as the temperature decreases, the time scales required to reach equilibrium (or metastable equilibrium) become geologically long. Yet the apparent finite temperature divergence is fundamental to many theories of glasses; therefore, it becomes essential to find ways to finesse the extreme time scales related to the so-called Kauzmann paradox to bring new information to the ongoing conversation concerning the existence or not of an ideal glass transition at either the Kauzmann temperature or the Vogel–Fulcher–Tammann temperature. After describing the framework of the glassy state that is formed by the early ideas of a fictive temperature, we examine the use of extremely low fictive temperature glasses as a means to potentially get around the long time-scale problem. The challenge is to find ways to create such glasses and measure their properties. In addition to looking at the dynamic behavior of a 20-million-year-old amber and a vapor-deposited amorphous perfluoropolymer whose fictive temperature was the same as the Kauzmann temperature for the material, we also examine the possibility of directly testing the thermodynamics of an ideal glass transition by making athermal solutions of a poly(α-methyl styrene) and its pentamer, where we find that the entropy surface determined from extrapolation of the heat capacity to zero pentamer shows no distinct transition at as much as 180 K below the Kauzmann temperature. The significance of the dynamics of the stable glasses and the thermodynamics of the polymer solutions is discussed in terms that challenge the idea of an ideal glass transition. We also look in more detail at the ability to use vapor deposition to make ethylbenzene, a small-molecule organic, into an ultra-stable glass with a fictive temperature that is possibly below the Kauzmann temperature of this material. We end with remarks on the question of decoupling of different relaxation mechanisms as something not treated by current theories of glass, and we consider some open questions related to the fact that the glass transition remains an unresolved and important problem.
Collapse
Affiliation(s)
- Gregory B. McKenna
- Department of Chemical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409-3121
| |
Collapse
|
15
|
Wang Y, Gu K, Monnier X, Jeong H, Chowdhury M, Cangialosi D, Loo YL, Priestley RD. Tunable Properties of MAPLE-Deposited Thin Films in the Presence of Suppressed Segmental Dynamics. ACS Macro Lett 2019; 8:1115-1121. [PMID: 35619457 DOI: 10.1021/acsmacrolett.9b00406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Processing polymer thin films by physical vapor deposition has been a major challenge due to material degradation. This challenge has limited our understanding of morphological control by top-down approaches that can be crucial for many applications. Recently, matrix-assisted pulsed laser evaporation (MAPLE) has emerged as an alternative route to fabricate polymer thin films from near-gas phase growth conditions. In this Letter, we investigate how this approach can result in a stable two-phase film structure of semicrystalline polymers via a unique combination of MAPLE and flash calorimetry. In the case of MAPLE-deposited poly(ethylene oxide) (PEO) thin films, we find a 35 °C enhancement in the glass transition temperature relative to melt-crystallized films, which is associated with irreversible chain adsorption in the amorphous region of the film. Remarkably, by varying substrate temperature during deposition, we reveal the ability to significantly tune the crystal orientation, extent of crystallinity, and lamellar thickness of MAPLE-deposited PEO thin films.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kaichen Gu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Xavier Monnier
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Hyuncheol Jeong
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Mithun Chowdhury
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Daniele Cangialosi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Qian Z, Cao Z, Galuska L, Zhang S, Xu J, Gu X. Glass Transition Phenomenon for Conjugated Polymers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900062] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiyuan Qian
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Luke Galuska
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Song Zhang
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Jie Xu
- Argonne National Laboratory Lemont IL 60439 USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Device The University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
17
|
Yoon H, McKenna GB. Testing the paradigm of an ideal glass transition: Dynamics of an ultrastable polymeric glass. SCIENCE ADVANCES 2018; 4:eaau5423. [PMID: 30588491 PMCID: PMC6303122 DOI: 10.1126/sciadv.aau5423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/20/2018] [Indexed: 05/29/2023]
Abstract
A major challenge to understanding glass-forming materials is obtaining equilibrium data far below the laboratory glass transition temperature T g. The challenge arises because it takes geologic aging times to achieve the equilibrium glassy state when temperatures are well below T g. Here, we finesse this problem through measurements on an ultrastable amorphous Teflon with fictive temperature T f near to its Kauzmann temperature T K. In the window between T f and T g, the material has a lower molecular mobility than the equilibrium state because of its low specific volume and enthalpy. Our measurements show that the determined scaled relaxation times deviate strongly from the classical expectation of divergence of time scales at a finite temperature. The results challenge the view of an ideal glass transition at or near to T K.
Collapse
|
18
|
Wang Y, Jeong H, Chowdhury M, Arnold CB, Priestley RD. Exploiting physical vapor deposition for morphological control in semi‐crystalline polymer films. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yucheng Wang
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey
| | - Hyuncheol Jeong
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey
| | - Mithun Chowdhury
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey
| | - Craig B. Arnold
- Department of Mechanical and Aerospace Engineering Princeton University Princeton New Jersey
- Princeton Institute for the Science and Technology of Materials Princeton University Princeton New Jersey
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey
- Princeton Institute for the Science and Technology of Materials Princeton University Princeton New Jersey
| |
Collapse
|
19
|
Beasley MS, Tylinski M, Chua YZ, Schick C, Ediger MD. Glasses of three alkyl phosphates show a range of kinetic stabilities when prepared by physical vapor deposition. J Chem Phys 2018; 148:174503. [DOI: 10.1063/1.5026505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. S. Beasley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M. Tylinski
- Department of Chemistry, Widener University, Chester, Pennsylvania 19013, USA
| | - Y. Z. Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Center CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - C. Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Center CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
20
|
Affiliation(s)
- M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison,
1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
21
|
McKenna GB, Simon SL. 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01014] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| | - Sindee L. Simon
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, United States
| |
Collapse
|