1
|
Li Y, Dong J, Zhan W, Shao Y, Zhu J, Sun N, Dong N, Li Y, Wu L, Zhou Q, Wang Q, Yin H, Cao X, Xu X, Dai R, Zhou Z, Wong HM, Li QL. Constructing the Enamel-Like Dentin Adhesion Interface to Achieve Durable Resin-Dentin Adhesion. ACS NANO 2024; 18:30031-30052. [PMID: 39412197 DOI: 10.1021/acsnano.4c11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Enamel adhesion is acknowledged as durable; however, achieving long-lasting dentin adhesion remains a formidable challenge due to degradation of exposed collagen matrix after acid-etching of dentin. The idea of developing an enamel-like adhesion interface holds great promise in achieving enduring dentin adhesion. In this study, we constructed an enamel-like adhesion interface using a rapid remineralization strategy comprising an acidic primer and a rapid remineralization medium. Specifically, the acidic primer of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) and epigallocatechin-3-gallate (EGCG) nanocomplex (MDP@EGCG primer) was utilized to partially demineralize dentin within 30 s, and the MDP@EGCG nanocomplex showed a strong interaction with exposed collagen, enhancing collagen remineralization properties. Then, the rapid remineralization medium containing polyaspartate (Pasp) stabilized amorphous calcium and phosphorus nanoclusters (rapid Pasp-CaP) was applied to modified dentin collagen for 1 min, which caused rapid collagen remineralization within a clinically acceptable time frame. This strategy successfully generated an inorganic rough and porous adhesive interface resembling etched enamel, fundamentally addressed issues of collagen exposure, and achieved durable dentin adhesion in vitro and in vivo while also ensuring user-friendliness. It exhibited potential in prolonging the lifespan of adhesive restorations in clinical settings. In addition, it holds significant promise in the fields of caries and dentin sensitivity treatment and collagen-based tissue engineering scaffolds.
Collapse
Affiliation(s)
- Yuzhu Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Jianguo Dong
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Wenfang Zhan
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yurui Shao
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jiaxin Zhu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Ning Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Nihang Dong
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Youqin Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Leping Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qingli Zhou
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qingqing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hanlin Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei 230094, China
| | - Xiaoma Cao
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Xiaohua Xu
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Ruoxi Dai
- Department of Comprehensive Care, School of Dental Medicine, Tufts University, Boston, Massachusetts 0211, United States
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Quan-Li Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| |
Collapse
|
2
|
Gerrits L, Bakker B, Hendriks LD, Engels S, Hammink R, Kouwer PHJ. Tailoring of Physical Properties in Macroporous Poly(isocyanopeptide) Cryogels. Biomacromolecules 2024; 25:3464-3474. [PMID: 38743442 PMCID: PMC11170948 DOI: 10.1021/acs.biomac.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.
Collapse
Affiliation(s)
- Lotte Gerrits
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Bram Bakker
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Lynn D. Hendriks
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Sjoerd Engels
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| | - Roel Hammink
- Department
of Medical BioSciences,Radboudumc, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
- Division
of Immunotherapy, Oncode Institute, Radboud
University Medical Center, 6525 GA Nijmegen ,Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen ,Netherlands
| |
Collapse
|
3
|
Kim YH, Park C, Nguyen HD, V Ngo H, Lee BJ. Self-assembled nanonization of fatty acid-conjugated vaccine antigen for enhanced thermal stability. Int J Pharm 2024; 658:124176. [PMID: 38688427 DOI: 10.1016/j.ijpharm.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
The aim of this study was to evaluate the enhanced thermal stability and physicochemical properties of fattigated vaccine antigens. High molecular weight influenza hemagglutinin (Heg) was used as a model antigen because of low heat stability requiring cold chamber. Heg was conjugated with long-chain oleic acid (C18) and short-chain 3-decenoic acid (C10) to prepare fattigated Heg. Circular dichroism analysis revealed no significant changes in the three-dimensional structure post-conjugation. In the liquid state, the fattigated Heg was self-assembled into nanoparticles (NPs) due to its amphiphilic nature, with sizes of 136.27 ± 12.78 nm for oleic acid-conjugated Heg (HOC) and 88.73 ± 3.27 nm for 3-decenoic acid-conjugated Heg (HDC). Accelerated thermal stability studies at 60 °C for 7 days demonstrated that fattigated Heg exhibited higher thermal stability than Heg in various liquid or solid states. The longer-chained HOC showed better thermal stability than HDC in the liquid state, attributed to increased hydrophobic interactions during self-assembly. In bio-mimicking liquid states at 37 °C, HOC exhibited higher thermal stability than Heg. Furthermore, solid-state HOC with cryoprotectants (trehalose, mannitol, and Tween® 80) had significantly increased thermal stability due to reduced exposure of protein surface area via nanonization behavior. The current fattigation platform could be a promising strategy for developing thermostable nano vaccines of heat-labile vaccine antigens.
Collapse
Affiliation(s)
- Yeon-Ho Kim
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Hy D Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hai V Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
4
|
Ji D, Liu J, Zhao J, Li M, Rho Y, Shin H, Han TH, Bae J. Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions. Nat Commun 2024; 15:3925. [PMID: 38724512 PMCID: PMC11082145 DOI: 10.1038/s41467-024-48121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.
Collapse
Affiliation(s)
- Donghwan Ji
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yumi Rho
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Scalzitti N, Miralavy I, Korenchan DE, Farrar CT, Gilad AA, Banzhaf W. Computational peptide discovery with a genetic programming approach. J Comput Aided Mol Des 2024; 38:17. [PMID: 38570405 PMCID: PMC11416381 DOI: 10.1007/s10822-024-00558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. In silico methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POETRegex , where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.
Collapse
Affiliation(s)
- Nicolas Scalzitti
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Iliya Miralavy
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - David E Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Assaf A Gilad
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA.
- Department of Chemical Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, USA.
| | - Wolfgang Banzhaf
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA.
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Singh AN, Meena A, Nam KW. Gels in Motion: Recent Advancements in Energy Applications. Gels 2024; 10:122. [PMID: 38391452 PMCID: PMC10888500 DOI: 10.3390/gels10020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.
Collapse
Affiliation(s)
- Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Abhishek Meena
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Center for Next Generation Energy and Electronic Materials, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
7
|
Baffoe E, Dauer E, Ghahremaninezhad A. Effect of proteins on biocementation in construction materials. iScience 2024; 27:108743. [PMID: 38235339 PMCID: PMC10792237 DOI: 10.1016/j.isci.2023.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
This study examines the effect of proteins on the binding property and microstructure of enzymatic-induced calcium carbonate precipitation (EICP) in cementitious environment. The protein modified precipitates generally demonstrated improved binding to a glass slide surface or cement paste surface compared to the control precipitate. A marked decrease in the amount and binding strength of the precipitates in the cementitious environment was observed due to a reduction in the urease enzyme activity. The protein modified precipitates exhibited noticeable improvement compared to the control precipitate in cementitious environment which could arise from the ability of the proteins to partially shield urease from the negative effect of high pH. The protein gel network formation due to the complexation between the proteins and Ca2+ provides nucleation sites for CaCO3 crystallization. The FTIR, SEM, TGA, and XRD results indicated that vaterite is the dominant polymorph in cementitious environment compared to calcite in deionized water.
Collapse
Affiliation(s)
- Elvis Baffoe
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Edward Dauer
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Ali Ghahremaninezhad
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
8
|
Afewerki S, Edlund U. Unlocking the Power of Multicatalytic Synergistic Transformation: toward Environmentally Adaptable Organohydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306657. [PMID: 37824080 DOI: 10.1002/adma.202306657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Indexed: 10/13/2023]
Abstract
A sustainable and efficient multicatalytic chemical transformation approach is devised for the development of all-biobased environmentally adaptable polymers and gels with multifunctional properties. The catalytic system, utilizing Lignin aluminum nanoparticles (AlNPs)-aluminum ions (Al3+ ), synergistically combines multiple catalytic cycles to create robust, mechanically stable, and versatile organohydrogels. Single catalytic cycles alone fail to achieve desired results, highlighting the importance of cooperatively combining different cycles for successful outcomes. The transformation involves free radical crosslinking, reversible quinone-catechol reactions, and an autocatalytic mechanism, resulting in a dual crosslinking strategy that incorporates both covalent and ionic crosslinking. This approach creates a dynamic gel system with combined energy dissipation and storage mechanisms. The engineered organohydrogels demonstrate vital multifunctionalities such as good thermal stability, self-healing, and adhesive properties, flame-retardancy, mechanical resilience and durability, conductivity, viscoelastic properties, environmental adaptability, and resistance to extreme conditions such as freezing and drying. The developed catalytic technology and resulting gels hold significant potential for applications in flexible electronics, energy storage, actuators, and sensors.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| |
Collapse
|
9
|
Fillion AJ, Bricco AR, Lee HD, Korenchan D, Farrar CT, Gilad AA. Development of a synthetic biosensor for chemical exchange MRI utilizing in silico optimized peptides. NMR IN BIOMEDICINE 2023; 36:e5007. [PMID: 37469121 PMCID: PMC11075521 DOI: 10.1002/nbm.5007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide, was designed to be 198 amino acids. SuperCESTide was expressed in E. coli and purified with size exclusion chromatography. The magnetic transfer ratio asymmetry generated by superCESTide was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine) and human protamine. These data show that novel peptides with sequences optimized in silico for CEST contrast that utilize a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.
Collapse
Affiliation(s)
- Adam J. Fillion
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - David Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Scalzitti N, Miralavy I, Korenchan DE, Farrar CT, Gilad AA, Banzhaf W. Computational Peptide Discovery with a Genetic Programming Approach. RESEARCH SQUARE 2023:rs.3.rs-3307450. [PMID: 37693481 PMCID: PMC10491332 DOI: 10.21203/rs.3.rs-3307450/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search space. In silico methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and facilitating the discovery of new peptides. Results This study presents the development and use of a variant of the initial POET algorithm, called P O E T R e g e x , which is based on genetic programming, where individuals are represented by a list of regular expressions. The program was trained on a small curated dataset and employed to predict new peptides that can improve the problem of sensitivity in detecting peptides through magnetic resonance imaging using chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET variant and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. Conclusions By combining the power of genetic programming with the flexibility of regular expressions, new potential peptide targets were identified to improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.
Collapse
Affiliation(s)
- Nicolas Scalzitti
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Iliya Miralavy
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - David E. Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Assaf A. Gilad
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Wolfgang Banzhaf
- BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Fillion AJ, Bricco AR, Lee HD, Korenchan D, Farrar CT, Gilad AA. Development of a Synthetic Biosensor for Chemical Exchange MRI Utilizing In Silico Optimized Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531737. [PMID: 37016672 PMCID: PMC10071792 DOI: 10.1101/2023.03.08.531737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) has been identified as a novel alternative to classical diagnostic imaging. Over the last several decades, many studies have been conducted to determine possible CEST agents, such as endogenously expressed compounds or proteins, that can be utilized to produce contrast with minimally invasive procedures and reduced or non-existent levels of toxicity. In recent years there has been an increased interest in the generation of genetically engineered CEST contrast agents, typically based on existing proteins with CEST contrast or modified to produce CEST contrast. We have developed an in-silico method for the evolution of peptide sequences to optimize CEST contrast and showed that these peptides could be combined to create de novo biosensors for CEST MRI. A single protein, superCESTide 2.0, was designed to be 198 amino acids. SuperCESTide 2.0 was expressed in E. coli and purified with size-exclusion chromatography. The magnetic transfer ratio asymmetry (MTR asym ) generated by superCESTide 2.0 was comparable to levels seen in previous CEST reporters, such as protamine sulfate (salmon protamine, SP), Poly-L-Lysine (PLL), and human protamine (hPRM1). This data shows that novel peptides with sequences optimized in silico for CEST contrast that utilizes a more comprehensive range of amino acids can still produce contrast when assembled into protein units expressed in complex living environments.
Collapse
Affiliation(s)
- Adam J. Fillion
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - David Korenchan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Sabaghi M, Tavasoli S, Hoseyni SZ, Mozafari M, Degraeve P, Katouzian I. A critical review on approaches to regulate the release rate of bioactive compounds from biopolymeric matrices. Food Chem 2022; 382:132411. [DOI: 10.1016/j.foodchem.2022.132411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
13
|
Synthesis and characterization of ambient-processed all-inorganic perovskite CsPbBr2Cl micro-crystals and rods. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Cao Z, Yuan H, Li N, Liu X, Qu X, Xing C. The preparation of biomineralized PIC/HA hybrid composites with strain-stiffening and the effect on MC3T3-E1 cells. Macromol Rapid Commun 2022; 43:e2200135. [PMID: 35365902 DOI: 10.1002/marc.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Indexed: 11/10/2022]
Abstract
The development of biomimetic extracellular matrix (ECM) with fibrous structure and complex nonlinear mechanics has been attracting intensive attention over the past decades both in material science and tissue engineering. Polyisocyanopeptide (PIC) hydrogels are a class of fully synthetic materials that can mimic biogels, such as fibrin and collagen, in nearly all aspects, particularly the micron-sized gel network and the strong strain-stiffening behavior in the biological regime. Here, we constructed a biomimetic PIC/hydroxyapatite (HA) hybrid composite through an enzymatic biomineralization strategy. HA biominerals grew on PIC bundles in situ catalyzed by the embedded alkaline phosphatase (ALP) which further crosslinked the gel networks and reinforced the mechanical property of PIC hydrogels. Significantly, PIC/HA composites exhibited ultra-responsive nonlinear mechanics with higher sensitivity to mechanical stress compared with those without biomineralization. As a consequence, the presence of HA can provide cell adhesion sites for PIC gels and induce osteogenic differentiation of pre-osteoblasts by virtue of the changes in mechanical properties. With these outstanding properties, therefore, PIC/HA composites present promising prospects in bone tissue engineering as biomimetic ECM. polyisocyanopeptide hydrogel; strain-stiffening; biomimetic extracellular matrix; biomineralization This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhanshuo Cao
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China.,School of Chemical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hongbo Yuan
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ning Li
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoning Liu
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiongwei Qu
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China.,School of Chemical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China.,School of Chemical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
15
|
Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PH. Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioact Mater 2022; 9:316-331. [PMID: 34820573 PMCID: PMC8586441 DOI: 10.1016/j.bioactmat.2021.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) matrix models using hydrogels are powerful tools to understand and predict cell behavior. The interactions between the cell and its matrix, however is highly complex: the matrix has a profound effect on basic cell functions but simultaneously, cells are able to actively manipulate the matrix properties. This (mechano)reciprocity between cells and the extracellular matrix (ECM) is central in regulating tissue functions and it is fundamentally important to broadly consider the biomechanical properties of the in vivo ECM when designing in vitro matrix models. This manuscript discusses two commonly used biopolymer networks, i.e. collagen and fibrin gels, and one synthetic polymer network, polyisocyanide gel (PIC), which all possess the characteristic nonlinear mechanics in the biological stress regime. We start from the structure of the materials, then address the uses, advantages, and limitations of each material, to provide a guideline for tissue engineers and biophysicists in utilizing current materials and also designing new materials for 3D cell culture purposes.
Collapse
Affiliation(s)
- Kaizheng Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Maury Wiendels
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, PR China
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Paul H.J. Kouwer
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Bera H, Abosheasha MA, Ito Y, Ueda M. Hypoxia-responsive pullulan-based nanoparticles as erlotinib carriers. Int J Biol Macromol 2021; 191:764-774. [PMID: 34600326 DOI: 10.1016/j.ijbiomac.2021.09.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/06/2023]
Abstract
A hypoxia-responsive pullulan-based co-polymer was developed to assess its efficacy to deliver erlotinib (ERL) to the cervical cancer cells. Upon exposure to hypoxic condition, the synthesized and structurally characterized co-polymer i.e. succinyl pullulan-g-6-(2-nitroimidazole) hexylamine (Pull-SA-HA-NI) exhibited a hypochromic shift in the UV spectra and alteration in its self-assembled structures as compared to the control co-polymer, succinyl pullulan-g-hexylamine (Pull-SA-HA). Its corresponding ERL-loaded nanoparticles (NPs) displayed an attenuated crystallinity of pure ERL with excellent drug-trapping capacity (DEE, 94.23 ± 1.36%) and acceptable zeta potential (+39.21 ± 1.09 mV) and diameter (84.10 ± 2.10 nm) values. These also evidenced a faster drug release profile under hypoxic condition relative to the normoxic condition. The cellular internalization of the NPs was mediated through the energy-dependent endocytic process, which could utilize its multiple pathways (i.e., macropinocytosis, clathrin- and caveolae-mediated endocytosis). The ERL-loaded NPs suppressed HeLa cell proliferation and induced apoptosis more efficiently than the pristine drug.
Collapse
Affiliation(s)
- Hriday Bera
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Mohammed A Abosheasha
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
17
|
Isolation and thermo-acclimation of thermophilic bacteria in hyperthermophilic fermentation system. Bioprocess Biosyst Eng 2021; 45:75-85. [PMID: 34564754 DOI: 10.1007/s00449-021-02640-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Hyperthermophilic microorganisms play a key role in the hyper-thermophilic composting (HTC) technique. However, little information is available about the hyperthermophilic microorganisms prevalent in HTC systems, except for the Calditerricola satsumensis, Calditerricola yamamurae, and Thermaerobacter. To obtain effective hyper-thermophilic microorganisms, a continuous thermo-acclimation of the suitable thermophilic microorganisms was demonstrated in this study. Bacillus thermoamylovorans with high-temperature endurance (70 °C) were newly isolated from sludge composting, and an adequate slow heating rate (2 °C per cycle) was applied to further improve its thermostability. Finally, a strain with a maximum growth temperature of 80 °C was obtained. Moreover, structural and hydrophobic changes in cell proteins, the special amino acid content ratio, and the membrane permeability of the thermophilic bacterium after thermo-acclimation were evaluated for improved thermostability. In addition, the acclimated hyperthermophilic bacterium was further inoculated into the HTC system, and an excellent performance with a maximum operating temperature of 82 °C was observed.
Collapse
|
18
|
van Dam EP, Yuan H, Kouwer PHJ, Bakker HJ. Structure and Dynamics of a Temperature-Sensitive Hydrogel. J Phys Chem B 2021; 125:8219-8224. [PMID: 34279949 PMCID: PMC8327313 DOI: 10.1021/acs.jpcb.1c03121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Polyisocyanotripeptides
(TriPIC) are biomimetic polymers which
consist of a β-helical backbone stabilized by hydrogen bonds
between amide groups. Their oligoethylene glycol side chains give
aqueous TriPIC solutions a thermoresponsive behavior: at 50 °C
the solution becomes a hydrogel. In this paper we study the molecular
structure and water dynamics of TriPIC aqueous solutions while undergoing
gelation using FT-IR spectroscopy and polarization-resolved femtosecond
infrared spectroscopy (fs-IR). We find evidence that the oligoethylene
glycol side chains trap part of the water molecules upon gel formation,
and we propose that the interaction between the oligoethylene glycol
side chains and water plays an essential role in the bundling of the
polymers and thus in the formation of a hydrogel.
Collapse
Affiliation(s)
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China.,Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
19
|
Cao Y, Ren L, Zhang Y, Lu X, Zhang X, Yan J, Li W, Masuda T, Zhang A. Remarkable Effects of Anions on the Chirality of Thermoresponsive Helical Dendronized Poly(phenylacetylene)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuexin Cao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Yangwen Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Toshio Masuda
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
20
|
Du C, Gao D, Gao M, Yuan H, Liu X, Wang B, Xing C. Property Regulation of Conjugated Oligoelectrolytes with Polyisocyanide to Achieve Efficient Photodynamic Antibacterial Biomimetic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27955-27962. [PMID: 34124876 DOI: 10.1021/acsami.1c06659] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabricating antibacterial hydrogels with antimicrobial drugs and synthetic biocompatible biomimetic hydrogels is a promising strategy for practical medical applications. Here, we report a bicomponent hydrogel composed of a biomimetic polyisocyanopetide (PIC) hydrogel and a photodynamic antibacterial membrane-intercalating conjugated oligoelectrolyte (COE). The aggregation behavior and aggregate size of the COEs in water can be regulated using the PIC hydrogel, which could induce COEs with higher reactive oxygen species (ROS) production efficiency and increased association of COEs toward bacteria, therefore enhancing the antibacterial efficiency. This strategy provides a facile method for developing biomimetic hydrogels with high antibacterial capability.
Collapse
Affiliation(s)
- Changsheng Du
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Dong Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Mengshi Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaoning Liu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Bing Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
21
|
Chen C, Li Z, Chen S, Kong L, Guo Z, Hu J, Chen Z, Yang L. The preparation of hydrogels with highly efficient self-healing and excellent mechanical properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Nissola C, Marchioro MLK, de Souza Leite Mello EV, Guidi AC, de Medeiros DC, da Silva CG, de Mello JCP, Pereira EA, Barbosa-Dekker AM, Dekker RFH, Cunha MAA. Hydrogel containing (1 → 6)-β-D-glucan (lasiodiplodan) effectively promotes dermal wound healing. Int J Biol Macromol 2021; 183:316-330. [PMID: 33930443 DOI: 10.1016/j.ijbiomac.2021.04.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
Abstract
A hydrogel containing exocellular (1 → 6)-β-D-glucan (lasiodiplodan, LAS) was developed and its wound healing potential was evaluated. β-Glucans have attracted much interest by the cosmetic industry sector because of their bioactive and functional properties and in promoting skin health. In the present work an β-glucan was studied as a healing biomaterial that has not hitherto been reported in the scientific literature. LAS produced by the ascomycete Lasiodiplodia theobromae MMPI was used in the formulation of a healing hydrogel. Physicochemical and microbiological quality parameters, antioxidant potential and stability of the formulation was evaluated. FTIR, thermal analysis and SEM techniques were also employed in the characterization. Wistar rats were used as a biological model to investigate the wound healing potential. Histological analyses of cutaneous tissue from the dorsal region were conducted after 4, 7, 10 and 14 days of treatment, and evaluated re-epithelialization, cell proliferation and collagen production. Physicochemical stability, microbiological quality and antioxidant potential, especially in relation to its ability to scavenge hydroxyl radicals were found. The hydrogel stimulated cell re-epithelialization and proliferation during all days of the treatment, and stimulated an increase of collagen fibers. Lasiodiplodan showed immunomodulatory activity in wound healing and this biomacromolecule could be an alternative compound in wound care.
Collapse
Affiliation(s)
- Candida Nissola
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, CEP 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Marcelo Luis Kuhn Marchioro
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Campus Pato Branco, CEP 85503-390 Pato Branco, Paraná, Brazil
| | | | - Ana Carolina Guidi
- Departamento de Farmácia, Laboratório de Biologia Farmacêutica, Universidade Estadual de Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | - Daniela Cristina de Medeiros
- Departamento de Farmácia, Laboratório de Biologia Farmacêutica, Universidade Estadual de Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | - Camila Girotto da Silva
- Departamento de Farmácia, Laboratório de Biologia Farmacêutica, Universidade Estadual de Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | - João Carlos Palazzo de Mello
- Departamento de Farmácia, Laboratório de Biologia Farmacêutica, Universidade Estadual de Maringá, CEP 87020-900 Maringá, Paraná, Brazil
| | - Edimir Andrade Pereira
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Campus Pato Branco, CEP 85503-390 Pato Branco, Paraná, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, CEP 86057-970 Londrina, Paraná, Brazil
| | - Robert F H Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, CEP 86036-370 Londrina, Paraná, Brazil
| | - Mário A A Cunha
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, CEP 85660-000 Dois Vizinhos, Paraná, Brazil; Departamento de Química, Universidade Tecnológica Federal do Paraná, Campus Pato Branco, CEP 85503-390 Pato Branco, Paraná, Brazil.
| |
Collapse
|
23
|
Gerrits L, Hammink R, Kouwer PHJ. Semiflexible polymer scaffolds: an overview of conjugation strategies. Polym Chem 2021. [DOI: 10.1039/d0py01662d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Semiflexible polymers are excellent scaffolds for the presentation of a wide variety of (bio)molecules. This manuscript reviews advantages and challenges of the most common conjugation strategies for the major classes of semiflexible polymers.
Collapse
Affiliation(s)
- Lotte Gerrits
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Roel Hammink
- Department of Tumor Immunology
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 GA Nijmegen
- The Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
24
|
Chen C, Duan N, Chen S, Guo Z, Hu J, Guo J, Chen Z, Yang L. Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Athiyarath V, Sureshan KM. Designed Synthesis of a 1D Polymer in Twist-Stacked Topology via Single-Crystal-to-Single-Crystal Polymerization. Angew Chem Int Ed Engl 2020; 59:15580-15585. [PMID: 32779302 DOI: 10.1002/anie.202006758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Indexed: 12/16/2022]
Abstract
To synthesize a fully organic 1D polymer in a novel twist-stacked topology, we designed a peptide monomer HC≡CCH2 -NH-Ile-Leu-N3 , which crystallizes with its molecules H-bonded along a six-fold screw axis. These H-bonded columns pack parallelly such that molecules arrange head-to-tail, forming linear non-covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist-stack along the screw axis. Crystals of this monomer, on heating, undergo single-crystal-to-single-crystal (SCSC) topochemical azide-alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4-triazole-linked polymer in a twist-stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre-decided topologies.
Collapse
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
26
|
Gavrilov M, Gilbert EP, Rowan AE, Lauko J, Yakubov GE. Structural Insights into the Mechanism of Heat-Set Gel Formation of Polyisocyanopeptide Polymers. Macromol Rapid Commun 2020; 41:e2000304. [PMID: 32761855 DOI: 10.1002/marc.202000304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/28/2020] [Indexed: 12/17/2022]
Abstract
One of the key factors influencing the mechanical properties of natural and synthetic extracellular matrices (ECM) is how large-scale 3D gel-like structures emerge from the molecular self-assembly of individual polymers. Here, structural characterization using small-angle neutron scattering (SANS) of ECM-mimicking polyisocyanopeptide (PIC) hydrogels are reported as a function of background ions across the Hofmeister series. More specifically, the process of polymer assembly is examined by probing the structural features of the heat-set gels and correlating them with their rheological and micro-mechanical properties. The molecular parameters obtained from SANS clearly show changes in polymer conformation which map onto the temperature-induced changes in rheological and micro-mechanical behavior. The formation of larger structures are linked to the formation of cross-links (or bundles), whilst the onset of their detection in the SANS is putatively linked to their concentration in the gel. These insights provide support for the 'hot-spot' gelation mechanism of PIC heat-set gels. Finally, it is found that formation of cross-links and heat-set gelling properties can be strongly influenced by ions in accordance with Hofmeister series. In practice, these results have significance since ions are inherently present in high concentration during cell culture studies; this may therefore influence the structure of synthetic ECM networks.
Collapse
Affiliation(s)
- Mikhail Gavrilov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia.,Australian Institute for Bioengineering and Nanotechnology and Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gleb E Yakubov
- School of Biosciences, Faculty of Science, University of Nottingham, Nottingham, UK.,School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
27
|
Athiyarath V, Sureshan KM. Designed Synthesis of a 1D Polymer in Twist‐Stacked Topology via Single‐Crystal‐to‐Single‐Crystal Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
28
|
Cabrera-Ramírez AH, Luzardo-Ocampo I, Ramírez-Jiménez AK, Morales-Sánchez E, Campos-Vega R, Gaytán-Martínez M. Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Res Int 2020; 134:109234. [PMID: 32517913 DOI: 10.1016/j.foodres.2020.109234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/11/2023]
Abstract
Protein bioaccessibility is a major concern in sorghum (Sorghum bicolor L. Moench) due to potential interactions with tannins affecting its nutritional value. Technological treatments such as boiling or alkaline cooking have been proposed to address this problem by reducing tannin-protein interactions. This research aimed to evaluate the impact of nixtamalization in the protein bioaccessibility from two sorghum varieties (red and white sorghum) during in vitro gastrointestinal digestion. Nixtamalization increased protein bioaccessibility in the non-digestible fraction (NDF) (5.26 and 26.31% for red and white sorghum, respectively). However, cooking showed a higher permeation speed of protein from red sorghum flours at the end of the intestinal incubation (9.42%). The SDS-PAGE profile of the digested fraction (DF) at 90 min of intestinal incubation indicated that, for red sorghum, cooking allows the formation of α and γ-kafirins while nixtamalization increase α-kafirin release. Principal Components Analysis (PCA) showed the association between nixtamalization and dissociation of δα kafirin complexes and increased protein content in the digestible fraction. In silico interactions indicated the highest biding energies for (+)-catechin and kafirin fractions (β-kafirin: -7.0 kcal/mol; γ-kafirin: -5.8 kcal/mol, and δ-kafirin: -6.8 kcal/mol), suggesting a minor influence of depolymerized proanthocyanidin fractions with sorghum proteins as a result of the nixtamalization process. In conclusion, nixtamalization increased the bioaccessibility of sorghum proteins, depolymerizing condensed tannins, and breaking protein-tannin complexes. Such technological process improves the nutrimental value of sorghum, supporting its inclusion in the human diet.
Collapse
Affiliation(s)
- A H Cabrera-Ramírez
- Instituto Politécnico Nacional, CICATA-IPN Unidad Querétaro, Cerro Blanco No. 141, Col. Colinas del Cimatario, Santiago de Querétaro, Querétaro C.P. 76090, Mexico
| | - I Luzardo-Ocampo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N. Santiago de Querétaro, Querétaro C.P. 76010, Mexico
| | - A K Ramírez-Jiménez
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas, 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - E Morales-Sánchez
- Instituto Politécnico Nacional, CICATA-IPN Unidad Querétaro, Cerro Blanco No. 141, Col. Colinas del Cimatario, Santiago de Querétaro, Querétaro C.P. 76090, Mexico
| | - R Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N. Santiago de Querétaro, Querétaro C.P. 76010, Mexico
| | - M Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N. Santiago de Querétaro, Querétaro C.P. 76010, Mexico.
| |
Collapse
|
29
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
30
|
Malhotra K, Shankar S, Chauhan N, Rai R, Singh Y. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ 4-L-Phe-PEA/chitosan and Boc-L-Phe-γ 4-L-Phe-PEA/chitosan, for biomaterial-related infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110648. [PMID: 32204079 DOI: 10.1016/j.msec.2020.110648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/29/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
Self-assembled peptide gels have generated interest as antibacterial materials to prevent biomaterial-related infections but these peptides are often associated with poor proteolytic stability. Efforts have been made to stabilize peptides by incorporating non-natural amino acids and/or linkages but complexation with polymers have not been explored. Therefore, we developed self-assembled peptide/chitosan gels, Boc-D-Phe-γ4-L-Phe-PEA (NH007)/chitosan and Boc-L-Phe-γ4-L-Phe-PEA (NH009)/chitosan, by complexing dipeptide NH007 or NH009 with chitosan in DMSO:acetic acid. The gels were characterized using SEM, FTIR, contact angle, and rheology data and found to exhibit excellent viscoelastic and self-healing characteristics. Complexation with chitosan led to an increase in stability against proteolytic degradation. Peptide/chitosan gels showed broad spectrum antibacterial activities against Gram-negative and Gram-positive bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis at a high inoculum of 107-108 cfu/mL. NH007/chitosan gels showed 70-75% inhibition, whereas NH009/chitosan showed 78-81% inhibition and NH009/chitosan gels, in particular, showed strong antibacterial activity against pathogenic strain of P. aeruginosa. A unique feature of these gels is that the antibacterial activities did not decrease gradually but were sustained for up to 48 h. The mechanistic studies using SEM and HR-TEM indicated interaction of gels with bacterial membrane components, leading to cell lysis. The MTT and LDH assays indicated >90% cell viability and only 8-10% toxicity towards NIH 3T3 fibroblast cells. Thus, peptide/chitosan gels developed in the present work showed improved proteolytic stability and sustained antibacterial activities and, therefore, may be used for preventing biomaterial-related infections.
Collapse
Affiliation(s)
- Kamal Malhotra
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Sudha Shankar
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India; Academy of Scientific and Innovative Research, New Delhi 110001, Delhi, India
| | - Neelam Chauhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Rajkishor Rai
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India; Academy of Scientific and Innovative Research, New Delhi 110001, Delhi, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.
| |
Collapse
|
31
|
Guo J, Xing C, Yuan H, Chai R, Zhan Y. Oligo (p-Phenylene Vinylene)/Polyisocyanopeptide Biomimetic Composite Hydrogel-Based Three-Dimensional Cell Culture System for Anticancer and Antibacterial Therapeutics. ACS APPLIED BIO MATERIALS 2019; 2:2520-2527. [DOI: 10.1021/acsabm.9b00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jingqi Guo
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Hongbo Yuan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Yong Zhan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| |
Collapse
|
32
|
Qiu Y, Hu H, Zhao D, Wang J, Wang H, Wang Q, Peng H, Liao Y, Xie X. Concentration-dependent dye aggregation and disassembly triggered by the same artificial helical foldamer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Liu K, Mihaila SM, Rowan A, Oosterwijk E, Kouwer PHJ. Synthetic Extracellular Matrices with Nonlinear Elasticity Regulate Cellular Organization. Biomacromolecules 2019; 20:826-834. [PMID: 30608161 PMCID: PMC6372982 DOI: 10.1021/acs.biomac.8b01445] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
One of the promises
of synthetic materials in cell culturing is
that control over their molecular structures may ultimately be used
to control their biological processes. Synthetic polymer hydrogels
from polyisocyanides (PIC) are a new class of minimal synthetic biomaterials
for three-dimensional cell culturing. The macromolecular lengths and
densities of biofunctional groups that decorate the polymer can be
readily manipulated while preserving the intrinsic nonlinear mechanics,
a feature commonly displayed by fibrous biological networks. In this
work, we propose the use of PIC gels as cell culture platforms with
decoupled mechanical inputs and biological cues. For this purpose,
different types of cells were encapsulated in PIC gels of tailored
compositions that systematically vary in adhesive peptide (GRGDS)
density, polymer length, and concentration; with the last two parameters
controlling the gel mechanics. Both cancer and smooth muscle cells
grew into multicellular spheroids with proliferation rates that depend
on the adhesive GRGDS density, regardless of the polymer length, suggesting
that for these cells, the biological input prevails over the mechanical
cues. In contrast, human adipose-derived stem cells do not form spheroids
but rather spread out. We find that the morphological changes strongly
depend on the adhesive ligand density and the network mechanics; gels
with the highest GRGDS densities and the strongest stiffening response
to stress show the strongest spreading. Our results highlight the
role of the nonlinear mechanics of the extracellular matrix and its
synthetic mimics in the regulation of cell functions.
Collapse
Affiliation(s)
- Kaizheng Liu
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | - Silvia M Mihaila
- Radboud University Medical Centre and Radboudumc Amalia Childern's hospital , Radboud Institute for Molecular Life Sciences, Department of Urology , Geert Grooteplein 26-28 , PO Box 9101, 6500 HB Nijmegen , The Netherlands
| | - Alan Rowan
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology , Brisbane , QLD 4072 , Australia
| | - Egbert Oosterwijk
- Radboud University Medical Centre and Radboudumc Amalia Childern's hospital , Radboud Institute for Molecular Life Sciences, Department of Urology , Geert Grooteplein 26-28 , PO Box 9101, 6500 HB Nijmegen , The Netherlands
| | - Paul H J Kouwer
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| |
Collapse
|