1
|
El-Arid S, Lenihan JM, Jacobsen A, Beeler AB, Grinstaff MW. Accessing Cyclobutane Polymers: Overcoming Synthetic Challenges via Efficient Continuous Flow [2 + 2] Photopolymerization. ACS Macro Lett 2024; 13:607-613. [PMID: 38695337 PMCID: PMC11414449 DOI: 10.1021/acsmacrolett.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We report an improved and efficient method to prepare well-defined, structurally complex truxinate cyclobutane polymers via a thioxanthone sensitized solution state [2 + 2] photopolymerization. Monomers with varying electron density and structure polymerize in good to excellent yields to afford a library of 42 polyesters. Monomers with internal olefin separation distances of greater than 5 Å undergo polymerization via intermolecular [2 + 2] photocycloaddition readily, as opposed to the intramolecular [2 + 2] photocycloaddition observed in monomers with olefins in closer proximity. Use of a continuous flow reactor decreases reaction time, increases polymer molecular weight, and decreases dispersity compared to batch reactions. Furthermore, under continuous flow, polymerization is readily scalable beyond what is possible with batch reactions. This advancement ushers truxinate cyclobutane-based polyesters, which have been historically limited to a few examples and only research scale quantities, to the forefront of development as new materials for potential use across industry sectors.
Collapse
|
2
|
Shimizu T, Whitfield R, Jones GR, Raji IO, Konkolewicz D, Truong NP, Anastasaki A. Controlling primary chain dispersity in network polymers: elucidating the effect of dispersity on degradation. Chem Sci 2023; 14:13419-13428. [PMID: 38033899 PMCID: PMC10685271 DOI: 10.1039/d3sc05203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Although dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented. By using an acid-switchable chain transfer agent and a degradable crosslinker in PET-RAFT polymerization, the in situ crosslinking of the propagating polymer chains was achieved in a quantitative manner. The incorporation of a degradable crosslinker, not only enables the accurate quantification of the various primary chain dispersities, post-synthesis, but also allows the investigation and comparison of their respective degradation profiles. Notably, the highest dispersity networks resulted in a 40% increase in degradation time when compared to their lower dispersity analogues, demonstrating that primary chain dispersity has a substantial impact on the network degradation rate. Our experimental findings were further supported by simulations, which emphasized the importance of higher molecular weight polymer chains, found within the high dispersity materials, in extending the lifetime of the network. This methodology presents a new and promising avenue to precisely tune primary chain dispersity within networks and demonstrates that polymer dispersity is an important parameter to consider when designing degradable materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
- Science & Innovation Center, Mitsubishi Chemical Corporation 1000 Kamoshida-cho, Aoba-ku Yokohama-shi Kanagawa 227-8502 Japan
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Ibrahim O Raji
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| |
Collapse
|
3
|
Ma Q, Qiao GG, An Z. Visible Light Photoiniferter Polymerization for Dispersity Control in High Molecular Weight Polymers. Angew Chem Int Ed Engl 2023; 62:e202314729. [PMID: 37814139 DOI: 10.1002/anie.202314729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.
Collapse
Affiliation(s)
- Qingchi Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Greg G Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Rigoglioso VP, Boydston AJ. Flow Optimization of Photoredox-Mediated Metal-Free Ring-Opening Metathesis Polymerization. ACS Macro Lett 2023; 12:1479-1485. [PMID: 37870749 DOI: 10.1021/acsmacrolett.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Photoredox-mediated metal-free ring-opening metathesis polymerization (MF-ROMP) is a convenient metal-free method to produce a variety of ROMP polymers. Transitioning MF-ROMP from a batch to a continuous flow process has yet to be demonstrated and could potentially benefit the production efficiency, safety, and modularity of reaction conditions. We designed and evaluated continuous flow and droplet flow setups and compared the results for MF-ROMP across a short series of common monomers. By using the droplet flow reactor setup, we achieved flow conversions comparable to that of batch and circumvented issues with diffusion-limited mixing and air exposure.
Collapse
Affiliation(s)
- Vincent P Rigoglioso
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Tan JD, Ramalingam B, Wong SL, Cheng JJW, Lim YF, Chellappan V, Khan SA, Kumar J, Hippalgaonkar K. Transfer Learning of Full Molecular Weight Distributions via High-Throughput Computer-Controlled Polymerization. J Chem Inf Model 2023; 63:4560-4573. [PMID: 37432764 DOI: 10.1021/acs.jcim.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The skew and shape of the molecular weight distribution (MWD) of polymers have a significant impact on polymer physical properties. Standard summary metrics statistically derived from the MWD only provide an incomplete picture of the polymer MWD. Machine learning (ML) methods coupled with high-throughput experimentation (HTE) could potentially allow for the prediction of the entire polymer MWD without information loss. In our work, we demonstrate a computer-controlled HTE platform that is able to run up to 8 unique variable conditions in parallel for the free radical polymerization of styrene. The segmented-flow HTE system was equipped with an inline Raman spectrometer and offline size exclusion chromatography (SEC) to obtain time-dependent conversion and MWD, respectively. Using ML forward models, we first predict monomer conversion, intrinsically learning varying polymerization kinetics that change for each experimental condition. In addition, we predict entire MWDs including the skew and shape as well as SHAP analysis to interpret the dependence on reagent concentrations and reaction time. We then used a transfer learning approach to use the data from our high-throughput flow reactor to predict batch polymerization MWDs with only three additional data points. Overall, we demonstrate that the combination of HTE and ML provides a high level of predictive accuracy in determining polymerization outcomes. Transfer learning can allow exploration outside existing parameter spaces efficiently, providing polymer chemists with the ability to target the synthesis of polymers with desired properties.
Collapse
Affiliation(s)
- Jin Da Tan
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- National University of Singapore Graduate School - Integrative Sciences and Engineering Programme, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Balamurugan Ramalingam
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science Technology and Research, 8 Biomedical Grove, Singapore 138665, Singapore
| | - Swee Liang Wong
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Home Team Science and Technology Agency, Singapore 138507, Singapore
| | - Jayce Jian Wei Cheng
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
| | - Yee-Fun Lim
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science Technology and Research, 8 Biomedical Grove, Singapore 138665, Singapore
| | - Vijila Chellappan
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
| | - Saif A Khan
- National University of Singapore Graduate School - Integrative Sciences and Engineering Programme, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Chemical and Biomolecular Engineering - National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jatin Kumar
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Xinterra Pte. Ltd., 77 Robinson Road, Singapore 068896, Singapore
| | - Kedar Hippalgaonkar
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Department of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Functional Intelligent Materials - National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
6
|
Van Oosten A, Verduyckt C, De Winter J, Gerbaux P, Koeckelberghs G. Influence of the dispersity and molar mass distribution of conjugated polymers on the aggregation type and subsequent chiral expression. SOFT MATTER 2023; 19:3794-3802. [PMID: 37191181 DOI: 10.1039/d3sm00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This study aims to determine the influence of the dispersity on the aggregation of conjugated polymers and their subsequent chiral expression. Dispersity has been thoroughly investigated for industrial polymerizations, but research on conjugated polymers is lacking. Nonetheless, knowledge thereof is crucial for controlling the aggregation type (type I versus type II) and its influence is therefore investigated. For that purpose, a series of polymers is synthesized via metered initiator addition, resulting in dispersities ranging from 1.18-1.56. The lower dispersity polymers yield type II aggregates and the resulting symmetrical electronic circular dichroism (ECD) spectra while the higher dispersity polymers are predominantly type I due to the longer chains effectively acting as a seed and therefore yield asymmetrical ECD spectra. Furthermore, a monomodal and bimodal molar mass distribution of similar dispersity are compared, demonstrating that bimodal distributions show both aggregation types and therefore more disorder, leading to a decrease in chiral expression.
Collapse
Affiliation(s)
- Annelien Van Oosten
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Cynthia Verduyckt
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP) - University of Mons (UMONS), Place du Parc 23, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP) - University of Mons (UMONS), Place du Parc 23, B-7000 Mons, Belgium
| | - Guy Koeckelberghs
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| |
Collapse
|
7
|
Shi Y, Chen SPR, Fragkiadakis G, Parisi D, Percec V, Vlassopoulos D, Monteiro MJ. Shape Control over the Polymer Molecular Weight Distribution and Influence on Rheological Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanlin Shi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Sung-Po R. Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - George Fragkiadakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion70013, Greece
| | - Daniele Parisi
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Philadelphia, Philadelphia, Pennsylvania19104-6323, United States
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion70013, Greece
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
8
|
Corrigan N, Boyer C. Living in the Moment: A Mathematically Verified Approach for Molecular Weight Distribution Analysis and Application to Data Storage. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW2052, Australia
| |
Collapse
|
9
|
Liu J, Fan K, Li X, Qin R, Wang X, Liu X, Liu X. Brand-New Method toward Widely Regulating Polymer Dispersity by Two-Dimensional Confining Radical Polymerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaxiang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Rui Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
10
|
Controlling polymer molecular weight distributions by light through reversible addition‐fragmentation chain transfer‐hetero‐Diels–Alder click conjugation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Antonopoulou MN, Whitfield R, Truong NP, Anastasaki A. Controlling polymer dispersity using switchable RAFT agents: Unravelling the effect of the organic content and degree of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Facile control of molecular weight distribution via droplet‐flow light‐driven reversible‐deactivation radical polymerization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Chen K, Zhou Y, Han S, Liu Y, Chen M. Main-Chain Fluoropolymers with Alternating Sequence Control via Light-Driven Reversible-Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022; 61:e202116135. [PMID: 35023256 DOI: 10.1002/anie.202116135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Polymers with regulated alternating structures are attractive in practical applications, particularly for main-chain fluoropolymers. We for the first time enabled controlled fluoropolymer synthesis with alternating sequence regulation using a novel fluorinated xanthate agent via a light-driven process, which achieved on-demand copolymerization of chlorotrifluoroethylene and vinyl esters/amides under both batch and flow conditions at ambient pressure. This method creates a facile access to fluoropolymers with a broad fraction range of alternating units, low dispersities and high chain-end fidelity. Moreover, a two-step photo-flow platform was established to streamline the in-situ chain-extension toward unprecedented block copolymers continuously from fluoroethylene. Influences of structural control were illustrated with thermal and surface properties. We anticipate that this work will promote advanced material engineering with customized fluoropolymers.
Collapse
Affiliation(s)
- Kaixuan Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Shantao Han
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yinli Liu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
15
|
Rosenbloom SI, Hsu JH, Fors BP. Controlling the shape of the molecular weight distribution for tailored tensile and rheological properties in thermoplastics and thermoplastic elastomers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jesse H. Hsu
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| |
Collapse
|
16
|
Chen M, Chen K, Zhou Y, Han S, Liu Y. Main‐Chain Fluoropolymers with Alternating Sequence Control via Light‐Driven Reversible‐Deactivation Copolymerization in Batch and Flow. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mao Chen
- Fudan University State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Yangpu, Handan Road 220, Yuejin Building 505 200433 Shanghai CHINA
| | - Kaixuan Chen
- Fudan University Department of Macromolecular Science CHINA
| | - Yang Zhou
- Fudan University Department of Macromolecular Science CHINA
| | - Shantao Han
- Fudan University Department of Macromolecular Science CHINA
| | - Yinli Liu
- Fudan University Department of Macromolecular Science CHINA
| |
Collapse
|
17
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Wang Z, Zhou Y, Chen M. Computer‐Aided
Living Polymerization Conducted under
Continuous‐Flow
Conditions
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| |
Collapse
|
19
|
Wang HS, Parkatzidis K, Harrisson S, Truong NP, Anastasaki A. Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers. Chem Sci 2021; 12:14376-14382. [PMID: 34880988 PMCID: PMC8580105 DOI: 10.1039/d1sc04241f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The dispersity (Đ) of a polymer is a key parameter in material design, and variations in Đ can have a strong influence on fundamental polymer properties. Despite its importance, current polymerization strategies to control Đ operate exclusively in organic media and are limited by slow polymerization rates, moderate conversions, significant loss of initiator efficiency and lack of dispersity control in block copolymers. Here, we demonstrate a rapid and quantitative method to tailor Đ of both homo and block copolymers in aqueous atom transfer radical polymerization. By using excess ligand to regulate the dissociation of bromide ions from the copper deactivator complexes, a wide range of monomodal molecular weight distributions (1.08 < Đ < 1.60) can be obtained within 10 min while achieving very high monomer conversions (∼99%). Despite the high conversions and the broad molecular weight distributions, very high end-group fidelity is maintained as exemplified by the ability to synthesize in situ diblock copolymers with absolute control over the dispersity of either block (e.g. low Đ → high Đ, high Đ → high Đ, high Đ → low Đ). The potential of our approach is further highlighted by the synthesis of complex pentablock and decablock copolymers without any need for purification between the iterative block formation steps. Other benefits of our methodology include the possibility to control Đ without affecting the M n, the interesting mechanistic concept that sheds light onto aqueous polymerizations and the capability to operate in the presence of air.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| | - Simon Harrisson
- LCPO, ENSCBP/CNRS/Université de Bordeaux, UMR5629 Pessac France
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg 5 Zurich Switzerland
| |
Collapse
|
20
|
Reis M, Gusev F, Taylor NG, Chung SH, Verber MD, Lee YZ, Isayev O, Leibfarth FA. Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis. J Am Chem Soc 2021; 143:17677-17689. [PMID: 34637304 PMCID: PMC10833148 DOI: 10.1021/jacs.1c08181] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern polymer science suffers from the curse of multidimensionality. The large chemical space imposed by including combinations of monomers into a statistical copolymer overwhelms polymer synthesis and characterization technology and limits the ability to systematically study structure-property relationships. To tackle this challenge in the context of 19F magnetic resonance imaging (MRI) agents, we pursued a computer-guided materials discovery approach that combines synergistic innovations in automated flow synthesis and machine learning (ML) method development. A software-controlled, continuous polymer synthesis platform was developed to enable iterative experimental-computational cycles that resulted in the synthesis of 397 unique copolymer compositions within a six-variable compositional space. The nonintuitive design criteria identified by ML, which were accomplished by exploring <0.9% of the overall compositional space, lead to the identification of >10 copolymer compositions that outperformed state-of-the-art materials.
Collapse
Affiliation(s)
- Marcus Reis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Filipp Gusev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas G Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sang Hun Chung
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew D Verber
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Shimizu T, Truong NP, Whitfield R, Anastasaki A. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity. ACS POLYMERS AU 2021; 1:187-195. [PMID: 34901951 PMCID: PMC8662723 DOI: 10.1021/acspolymersau.1c00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Cu(0)-reversible deactivation radical polymerization (RDRP) is a versatile polymerization tool, providing rapid access to well-defined polymers while utilizing mild reaction conditions and low catalyst loadings. However, thus far, this method has not been applied to tailor dispersity, a key parameter that determines the physical properties and applications of polymeric materials. Here, we report a simple to perform method, whereby Cu(0)-RDRP can systematically control polymer dispersity (Đ = 1.07-1.72), while maintaining monomodal molecular weight distributions. By varying the ligand concentration, we could effectively regulate the rates of initiation and deactivation, resulting in polymers of various dispersities. Importantly, both low and high dispersity PMA possess high end-group fidelity, as evidenced by MALDI-ToF-MS, allowing for a range of block copolymers to be prepared with different dispersity configurations. The scope of our method can also be extended to include inexpensive ligands (i.e., PMDETA), which also facilitated the polymerization of lower propagation rate constant monomers (i.e., styrene) and the in situ synthesis of block copolymers. This work significantly expands the toolbox of RDRP methods for tailoring dispersity in polymeric materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku,
Yokohama-shi, Kanagawa 227-8502, Japan
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| |
Collapse
|
22
|
Wallace MA, Sita LR. Temporal Control over Two‐ and Three‐State Living Coordinative Chain Transfer Polymerization for Modulating the Molecular Weight Distribution Profile of Polyolefins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark A. Wallace
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
23
|
Chen M, Li J, Ma K, Jin G, Pan X, Zhang Z, Zhu J. Controlling Polymer Molecular Weight Distribution through a Latent Mediator Strategy with Temporal Programming. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Kaiqi Ma
- School of Mechanical and Electric Engineering Soochow University Suzhou 215006 China
| | - Guoqin Jin
- School of Mechanical and Electric Engineering Soochow University Suzhou 215006 China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
24
|
Precise Control of Both Dispersity and Molecular Weight Distribution Shape by Polymer Blending. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Whitfield R, Truong NP, Anastasaki A. Precise Control of Both Dispersity and Molecular Weight Distribution Shape by Polymer Blending. Angew Chem Int Ed Engl 2021; 60:19383-19388. [PMID: 34133078 PMCID: PMC8456836 DOI: 10.1002/anie.202106729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/30/2022]
Abstract
The breadth and the shape of molecular weight distributions can significantly influence fundamental polymer properties that are critical for various applications. However, current approaches require the extensive synthesis of multiple polymers, are limited in dispersity precision and are typically incapable of simultaneously controlling both the dispersity and the shape of molecular weight distributions. Here we report a simplified approach, whereby on mixing two polymers (one of high Đ and one of low Đ), any intermediate dispersity value can be obtained (e.g. from 1.08 to 1.84). Unrivalled precision is achieved, with dispersity values obtained to even the nearest 0.01 (e.g. 1.37→1.38→1.39→1.40→1.41→1.42→1.43→1.44→1.45), while maintaining fairly monomodal molecular weight distributions. This approach was also employed to control the shape of molecular weight distributions and to obtain diblock copolymers with high dispersity accuracy. The straightforward nature of our methodology alongside its compatibility with a wide range of polymerisation protocols (e.g. ATRP, RAFT), significantly expands the toolbox of tailored polymeric materials and makes them accessible to all researchers.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 58093ZurichSwitzerland
| | - Nghia P. Truong
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 58093ZurichSwitzerland
| | - Athina Anastasaki
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 58093ZurichSwitzerland
| |
Collapse
|
26
|
Wallace MA, Sita LR. Temporal Control over Two- and Three-State Living Coordinative Chain Transfer Polymerization for Modulating the Molecular Weight Distribution Profile of Polyolefins. Angew Chem Int Ed Engl 2021; 60:19671-19678. [PMID: 34196076 DOI: 10.1002/anie.202105937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/27/2021] [Indexed: 11/12/2022]
Abstract
A highly versatile new strategy for manipulating the molecular weight profiles, including breadth, asymmetry (skewness) and modal nature (mono-, bi-, and multimodal), of a variety of different polyolefins is reported. It involves temporal control over two- and three-state living coordinative chain transfer polymerization (LCCTP) of olefins in a programmable way. By changing the identity of the R' groups of the chain transfer agent, ER'n , with time, different populations of chains within a bi- or multimodal polyolefin product can be selectively tagged with different end-groups. By changing the nature of the main-group metal of the CTA, programmed manipulation of the relative magnitudes of the dispersities of the different maxima that make up the final MWD profile can be achieved. This strategy can be implemented with existing LCCTP materials and conventional reactor methods to provide access to scalable and practical quantities of an unlimited array of new polyolefin materials.
Collapse
Affiliation(s)
- Mark A Wallace
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lawrence R Sita
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
27
|
Chen M, Li J, Ma K, Jin G, Pan X, Zhang Z, Zhu J. Controlling Polymer Molecular Weight Distribution through a Latent Mediator Strategy with Temporal Programming. Angew Chem Int Ed Engl 2021; 60:19705-19709. [PMID: 34189823 DOI: 10.1002/anie.202107106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/20/2021] [Indexed: 11/12/2022]
Abstract
Polymer molecular weight distribution (MWD) is a key parameter of polymers. Here we present a robust method for controlling polymer MWD in controlled cationic polymerizations. A latent mediator strategy was designed and combined with temporal programming to regenerate mediators at different times during polymerization. Both the breadths and shapes of MWD curves were tuned easily by adjusting an external light source. Bimodal, trimodal, and tetramodal distributions were obtained, and the breadths could be varied from 1.06 to 2.09. Polymers with different MWDs prepared by this method had good chain end fidelity, which was demonstrated with successful chain-extension experiments. In addition, the introduction of temporal programming with a computer-controlled single chip for the light source opened an avenue for the use of artificial intelligence in polymer synthesis.
Collapse
Affiliation(s)
- Miao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Kaiqi Ma
- School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215006, China
| | - Guoqin Jin
- School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215006, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
28
|
Molar Mass Dispersity Control by Iodine-mediated Reversible-deactivation Radical Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2602-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Wallace MA, Sita LR. Multi-State Living Degenerative and Chain Transfer Coordinative Polymerization of α-Olefins via Sub-Stoichiometric Activation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mark A. Wallace
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lawrence R. Sita
- Laboratory for Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
30
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
31
|
Zhang M, Li J, Chen M, Pan X, Zhang Z, Zhu J. Combination of the Photoinduced Atom Transfer Radical Addition Reaction and Living Cationic Polymerization: A Latent Initiator Strategy toward Tailoring Polymer Molecular Weight Distributions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengmeng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Miao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
Xu S, Trujillo FJ, Xu J, Boyer C, Corrigan N. Influence of Molecular Weight Distribution on the Thermoresponsive Transition of Poly(N-isopropylacrylamide). Macromol Rapid Commun 2021; 42:e2100212. [PMID: 34121259 DOI: 10.1002/marc.202100212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/09/2021] [Indexed: 11/10/2022]
Abstract
A series of poly(N-isopropylacrylamide) (PNIPAm) homopolymers with narrow molecular weight distributions (MWDs) is prepared via photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The thermal transition temperature of these polymer samples is analyzed via turbidity measurements in water/N,N'-dimethylformamide mixtures, which show that the cloud point temperatures are inversely proportional to the weight average molecular weight (Mw ). Binary mixtures of the narrowly distributed PNIPAm samples are also prepared and the statistical parameters for the MWDs of these blends are determined. Very interestingly, for binary blends of the PNIPAm samples, the thermoresponsive transition is not only dependent on the Mw , which has been shown previously, but also on higher order statistical parameters of the MWDs. Specifically, at very high values of skewness and kurtosis, the polymer blends deviate from a single sharp thermoresponsive transition toward a broader thermal response, and eventually to a regime of two more distinct transitions. This work highlights the importance of in-depth characterization of polymer MWDs for thermoresponsive polymers.
Collapse
Affiliation(s)
- Sihao Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Francisco J Trujillo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Cluster for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
33
|
Rolland M, Lohmann V, Whitfield R, Truong NP, Anastasaki A. Understanding dispersity control in
photo‐
atom transfer radical polymerization: Effect of degree of polymerization and kinetic evaluation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Victoria Lohmann
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| |
Collapse
|
34
|
Wang CG, Chong AML, Goto A. One Reagent with Two Functions: Simultaneous Living Radical Polymerization and Chain-End Substitution for Tailoring Polymer Dispersity. ACS Macro Lett 2021; 10:584-590. [PMID: 35570769 DOI: 10.1021/acsmacrolett.1c00179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular weight distribution of polymer, termed dispersity (Đ), is a fundamental parameter that determines polymer properties. Sodium azide (NaN3) functions as a catalyst in organocatalyzed living radical polymerization when the reaction medium is nonpolar. In contrast, NaN3 can act as a nucleophile when the reaction medium is polar. In this paper, we report an efficient approach to dispersity control by exploiting the dual functions of NaN3 under the varied solvent polarity. Simultaneous polymerization and chain-end substitution allowed us to tune the Đ values of various polymethacrylates and poly(butyl acrylate). Notably, the Đ value could be tuned to a wide range approximately from 1.2 to 2.0 for polymethacrylates and to 3.8 for poly(butyl acrylate). This approach afforded polymer brushes on surfaces with tailored Đ values. An interesting finding was that the polymer brushes exhibited a unique interaction with external molecules, depending on the Đ value.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Amerlyn Ming Liing Chong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
35
|
Li J, Kerr A, Song Q, Yang J, Häkkinen S, Pan X, Zhang Z, Zhu J, Perrier S. Manganese-Catalyzed Batch and Continuous Flow Cationic RAFT Polymerization Induced by Visible Light. ACS Macro Lett 2021; 10:570-575. [PMID: 35570764 DOI: 10.1021/acsmacrolett.1c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present a robust manganese-catalyzed cationic reversible addition-fragmentation chain transfer (RAFT) polymerization induced by visible light. Well-defined poly(vinyl ether)s with controlled molecular weight and molecular weight distributions (MWDs) can be conveniently prepared at room temperature without monomer purification. The commercially available manganese carbonyl bromide is used as the photocatalyst for cationic RAFT polymerization. Moreover, this method has been further applied in both batch and continuous flow systems, providing a visible light induced flow cationic polymerization under mild conditions.
Collapse
Affiliation(s)
- Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Andrew Kerr
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Qiao Song
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jie Yang
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Satu Häkkinen
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sébastien Perrier
- Department of Chemistry and Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
36
|
Gu Y, Lin P, Zhou C, Chen M. Machine learning-assisted systematical polymerization planning: case studies on reversible-deactivation radical polymerization. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9969-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Allegrezza ML, Konkolewicz D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett 2021; 10:433-446. [PMID: 35549229 DOI: 10.1021/acsmacrolett.1c00046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, photochemistry has emerged as a growing area in organic and polymer chemistry. Use of light to drive polymerization has advantages by imparting spatial and temporal control over the reaction. Photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) has emerged as an excellent technique for developing well-defined polymers from a variety of functional monomers. However, the mechanism, of electron versus energy transfer is debated in the literature, with conflicting reports on the underlying process. This perspective focuses on the mechanistic aspects of PET-RAFT, in particular, the electron versus energy transfer pathways. The different mechanisms are evaluated, including evidence for one versus the other mechanisms. The current literature has not reached a consensus across all PET-RAFT processes, but rather, each catalytic system has unique characteristics.
Collapse
Affiliation(s)
- Michael L. Allegrezza
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
38
|
Ng G, Judzewitsch P, Li M, Pester CW, Jung K, Boyer C. Synthesis of Polymer Brushes Via SI-PET-RAFT for Photodynamic Inactivation of Bacteria. Macromol Rapid Commun 2021; 42:e2100106. [PMID: 33834575 DOI: 10.1002/marc.202100106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Biofilms are a persistent issue in healthcare and industry. Once formed, the eradication of biofilms is challenging as the extracellular polymeric matrix provides protection against harsh environmental conditions and physically enhances resistance to antimicrobials. The fabrication of polymer brush coatings provides a versatile approach to modify the surface to resist the formation of biofilms. Herein, the authors report a facile synthetic route for the preparation of surface-tethered polymeric brushes with antifouling and visible light activated bactericidal properties using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT). Bactericidal property via the generation of singlet oxygen, which can be temporally and spatially controlled, is investigated against both Gram-positive and Gram-negative bacteria. In addition, the antibacterial properties of the surface can be recycled. This work paves the way for the preparation of polymer films that can resist and kill bacterial biofilms.
Collapse
Affiliation(s)
- Gervase Ng
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Peter Judzewitsch
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mingxiao Li
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christian W Pester
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kenward Jung
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
39
|
Corrigan N, Trujillo FJ, Xu J, Moad G, Hawker CJ, Boyer C. Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | | | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP). CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2529-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Parkatzidis K, Rolland M, Truong NP, Anastasaki A. Tailoring polymer dispersity by mixing ATRP initiators. Polym Chem 2021. [DOI: 10.1039/d1py01044a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein we present a simple batch method to control polymer dispersity using a mixture of two ATRP initiators with different reactivities.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Manon Rolland
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
42
|
Rosenbloom SI, Sifri RJ, Fors BP. Achieving molecular weight distribution shape control and broad dispersities using RAFT polymerizations. Polym Chem 2021. [DOI: 10.1039/d1py00399b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metered additions of chain transfer agents are used to control molecular weight distribution (MWD) features in reversible addition-fragmentation chain-transfer polymerizations, giving polymers with tailored MWD shapes and dispersities as high as 6.2.
Collapse
Affiliation(s)
- Stephanie I. Rosenbloom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Renee J. Sifri
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
43
|
Jia R, Tu Y, Glauber M, Huang Z, Xuan S, Zhang W, Zhou N, Li X, Zhang Z, Zhu X. Fine control of the molecular weight and polymer dispersity via a latent monomeric retarder. Polym Chem 2021. [DOI: 10.1039/d0py01569e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A latent monomeric retarder was used for a one-shot polymerization with a defined MW and Đ.
Collapse
|
44
|
Nwoko T, De Alwis Watuthanthrige N, Parnitzke B, Yehl K, Konkolewicz D. Tuning the molecular weight distributions of vinylketone-based polymers using RAFT photopolymerization and UV photodegradation. Polym Chem 2021. [DOI: 10.1039/d1py01129d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice and mixture of chain transfer agent in reversible addition/fragmentation chain transfer polymerization has been used to modulate the dispersity and architecture of vinyl ketone polymers and their copolymers.
Collapse
Affiliation(s)
- Tochukwu Nwoko
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | | | - Bryan Parnitzke
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| |
Collapse
|
45
|
Wang TT, Wu YY, Luo ZH, Zhou YN. “Living” Polymer Dispersity Quantification for Nitroxide-Mediated Polymerization Systems by Mimicking a Monodispersed Polymer Blending Strategy. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tian-Tian Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
46
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
48
|
Liu K, Corrigan N, Postma A, Moad G, Boyer C. A Comprehensive Platform for the Design and Synthesis of Polymer Molecular Weight Distributions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01954] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ke Liu
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine (ACN) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Almar Postma
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Graeme Moad
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine (ACN) and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
50
|
El Achi N, Bakkour Y, Adhami W, Molina J, Penhoat M, Azaroual N, Chausset-Boissarie L, Rolando C. Metal-Free ATRP Catalyzed by Visible Light in Continuous Flow. Front Chem 2020; 8:740. [PMID: 33102428 PMCID: PMC7505802 DOI: 10.3389/fchem.2020.00740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/17/2020] [Indexed: 01/29/2023] Open
Abstract
ATRP of methyl methacrylate catalyzed by Eosin Y, an inexpensive and an environmental benign dye, was performed in a continuous flow reactor made of FEP tubing and irradiated by visible light green LEDs. The reaction under flow conditions was significantly more rapid and controlled compared to that in batch giving 90% of polymerization after only 3 h of irradiation. The formed polymers in flow have M n measured by GPC and DOSY NMR in accordance with the theoretical values and show low dispersities (Ð < 1.5). The livingness of the polymers has been confirmed by LED on and LED off experiments and by the synthesis of block copolymers. The protocol described herein serves as a "proof of concept" of using Eosin Y as a photocatalyst for controlled polymerization and of using 1D and 2D NMR for polymer characterization. The protocol could be replicated in the future for other reversible-deactivation radical polymerizations.
Collapse
Affiliation(s)
- Nassim El Achi
- MSAP ‘Miniaturisation pour la Synthèse l'Analyse et la Protéomique’, Université de Lille, USR CNRS 3290, Lille, France
| | - Youssef Bakkour
- Laboratory of Applied Chemistry, Faculty of Sciences III, Lebanese University, Tripoli, Lebanon
| | - Wissal Adhami
- MSAP ‘Miniaturisation pour la Synthèse l'Analyse et la Protéomique’, Université de Lille, USR CNRS 3290, Lille, France
- Laboratory of Applied Chemistry, Faculty of Sciences III, Lebanese University, Tripoli, Lebanon
| | - Julien Molina
- MSAP ‘Miniaturisation pour la Synthèse l'Analyse et la Protéomique’, Université de Lille, USR CNRS 3290, Lille, France
| | - Maël Penhoat
- MSAP ‘Miniaturisation pour la Synthèse l'Analyse et la Protéomique’, Université de Lille, USR CNRS 3290, Lille, France
| | - Nathalie Azaroual
- Laboratoire de Physique et d'Application RMN, GRITA ‘Groupe de Recherche sur les formes Injectables et les Technologies Associées’, Université de Lille, EA 7365, Lille, France
| | - Laëtitia Chausset-Boissarie
- MSAP ‘Miniaturisation pour la Synthèse l'Analyse et la Protéomique’, Université de Lille, USR CNRS 3290, Lille, France
| | - Christian Rolando
- MSAP ‘Miniaturisation pour la Synthèse l'Analyse et la Protéomique’, Université de Lille, USR CNRS 3290, Lille, France
| |
Collapse
|