1
|
Niu Y, Liu Q, Ou X, Zhou Y, Sun Z, Yan F. CO 2-Sourced Polymer Dyes for Dual Information Encryption. SMALL METHODS 2024; 8:e2400470. [PMID: 38818740 DOI: 10.1002/smtd.202400470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Large amounts of small molecule dyes leak into the ecosystems annually in harmful and unsustainable ways. Polymer dyes have attracted much attention because of their high migration resistance, excellent stability, and minimized leakage. However, the complex synthesis process, high cost, and poor degradability hinder their widespread application. Herein, green and sustainable polymer dyes are prepared using natural dye quercetin (Qc) and CO2 through a one-step process. The CO2-sourced polymer dyes show strong migration resistance, high stability, and can be degraded on demand. Additionally, the CO2-sourced polymer dyes showed unique responses to Zn2+, leading to significantly enhanced fluorescence, highlighting their potential for information encryption/decryption. The CO2-sourced polymer dyes can solve the environmental hazards caused by small molecule dye leakage and promote the carbon cycle process. Meanwhile, the one-step synthesis process is expected to achieve sustainable and widespread utilization of CO2-sourced polymer dyes.
Collapse
Affiliation(s)
- Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Kadota K, Horike S. Conversion of Carbon Dioxide into Molecular-based Porous Frameworks. Acc Chem Res 2024; 57:3206-3216. [PMID: 39401789 PMCID: PMC11542181 DOI: 10.1021/acs.accounts.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024]
Abstract
ConspectusThe conversion of carbon dioxide (CO2) to value-added functional materials is a major challenge in realizing a carbon-neutral society. Although CO2 is an attractive renewable carbon resource with high natural abundance, its chemical inertness has made the conversion of CO2 into materials with the desired structures and functionality difficult. Molecular-based porous materials, such as metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), are designable porous solids constructed from molecular-based building units. While MOF/COFs attract wide attention as functional porous materials, the synthetic methods to convert CO2 into MOF/COFs have been unexplored due to the lack of synthetic guidelines for converting CO2 into molecular-based building units.In this Account, we describe state-of-the-art studies on the conversion of CO2 into MOF/COFs. First, we outline the key design principles of CO2-derived molecular building units for the construction of porous structures. The appropriate design of reactivity and the positioning of bridging sites in CO2-derived molecular building units is essential for constructing CO2-derived MOF/COFs with desired structures and properties. The synthesis of CO2-derived MOF/COFs involves both the transformation of CO2 into building units and the formation of extended structures of the MOF/COFs. We categorized the synthetic methods into three types as follows: a one-step synthesis (Type-I); a one-pot synthesis without workup (Type-II); and a multistep synthesis which needs workup (Type-III).We demonstrate that borohydride can convert CO2 into formate and formylhydroborate that serve as a bridging linker for MOFs in the Type-I and Type-II synthesis, representing the first examples of CO2-derived MOFs. The electronegativity of coexisting metal ions determines the selective conversion of CO2 into formate and formylhydroborate. Formylhydroborate-based MOFs exhibit flexible pore sizes controlled by the pressure of CO2 during synthesis. In pursuit of highly porous structures, we present the Type-I synthesis of MOFs from CO2 via the in situ transformation of CO2 into carbamate linkers by amines. The direct conversion of diluted CO2 (400 ppm) in air into carbamate-based MOFs is also feasible. Coordination interactions stabilize the intrinsically labile carbamate in the MOF lattice. A recent study demonstrates that the Type-III synthesis using alkynylsilane precursors enables the synthesis of highly porous and stable carboxylate-based MOFs from CO2, which exhibit catalytic activity in CO2 conversion. We also extended the synthesis of MOFs from CO2 to COFs. The Type-III synthesis using a formamide monomer affords stable CO2-derived COFs showing proton conduction properties. The precise design of CO2-derived building units enables expansion of the structures and functionalities of CO2-derived MOF/COFs. Finally, we propose future challenges in this field: (i) expanding structural diversity through synthesis using external fields and (ii) exploring unique functionalities of CO2-derived MOF/COFs, such as carriers for CO2 capture and precursors for CO2 transformation. We anticipate that this Account will lay the foundation for exploring new chemistry of the conversion of CO2 into porous materials.
Collapse
Affiliation(s)
- Kentaro Kadota
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Horike
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute
for Integrated Cell-Material Sciences, Institute
for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
3
|
Song B, Liang Y, Zhou Y, Zhang L, Li H, Zhu NX, Tang BZ, Zhao D, Liu B. CO 2-Based Stable Porous Metal-Organic Frameworks for CO 2 Utilization. J Am Chem Soc 2024; 146:14835-14843. [PMID: 38728105 DOI: 10.1021/jacs.4c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The transformation of carbon dioxide (CO2) into functional materials has garnered considerable worldwide interest. Metal-organic frameworks (MOFs), as a distinctive class of materials, have made great contributions to CO2 capture and conversion. However, facile conversion of CO2 to stable porous MOFs for CO2 utilization remains unexplored. Herein, we present a facile methodology of using CO2 to synthesize stable zirconium-based MOFs. Two zirconium-based MOFs CO2-Zr-DEP and CO2-Zr-DEDP with face-centered cubic topology were obtained via a sequential desilylation-carboxylation-coordination reaction. The MOFs exhibit excellent crystallinity, as verified through powder X-ray diffraction and high-resolution transmission electron microscopy analyses. They also have notable porosity with high surface area (SBET up to 3688 m2 g-1) and good CO2 adsorption capacity (up to 12.5 wt %). The resulting MOFs have abundant alkyne functional moieties, confirmed through 13C cross-polarization/magic angle spinning nuclear magnetic resonance and Fourier transform infrared spectra. Leveraging the catalytic prowess of Ag(I) in diverse CO2-involved reactions, we incorporated Ag(I) into zirconium-based MOFs, capitalizing on their interactions with carbon-carbon π-bonds of alkynes, thereby forming a heterogeneous catalyst. This catalyst demonstrates outstanding efficiency in catalyzing the conversion of CO2 and propargylic alcohols into cyclic carbonates, achieving >99% yield at room temperature and atmospheric pressure conditions. Thus, this work provides a dual CO2 utilization strategy, encompassing the synthesis of CO2-based MOFs (20-24 wt % from CO2) and their subsequent application in CO2 capture and conversion processes. This approach significantly enhances overall CO2 utilization.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuhang Liang
- Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Zhou
- Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liang Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Neng-Xiu Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
4
|
Tang S, Lin BL, Tonks I, Eagan JM, Ni X, Nozaki K. Sustainable Copolymer Synthesis from Carbon Dioxide and Butadiene. Chem Rev 2024; 124:3590-3607. [PMID: 38478849 DOI: 10.1021/acs.chemrev.3c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbon dioxide (CO2) has long been recognized as an ideal C1 feedstock comonomer for producing sustainable materials because it is renewable, abundant, and cost-effective. However, activating CO2 presents a significant challenge because it is highly oxidized and stable. A CO2/butadiene-derived δ-valerolactone (EVP), generated via palladium-catalyzed telomerization between CO2 and butadiene, has emerged as an attractive intermediate for producing sustainable copolymers from CO2 and butadiene. Owing to the presence of two active carbon-carbon double bonds and a lactone unit, EVP serves as a versatile intermediate for creating sustainable copolymers with a CO2 content of up to 29 wt % (33 mol %). In this Review, advances in the synthesis of copolymers from CO2 and butadiene with divergent structures through various polymerization protocols have been summarized. Achievements made in homo- and copolymerization of EVP or its derivatives are comprehensively reviewed, while the postmodification of the obtained copolymers to access new polymers are also discussed. Meanwhile, potential applications of the obtained copolymers are also discussed. The literature references were sorted into sections based on polymerization strategies and mechanisms, facilitating readers in gaining a comprehensive view of the present chemistry landscape and inspiring innovative approaches to synthesizing novel CO2-derived copolymers.
Collapse
Affiliation(s)
- Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo-Lin Lin
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Ian Tonks
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - James M Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United State
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Pobłocki K, Jarzembska KN, Kamiński R, Drzeżdżon J, Deresz KA, Schaniel D, Gołąbiewska A, Gawdzik B, Rybiński P, Jacewicz D. Porous oligomeric materials synthesised using a new, highly active precatalyst based on ruthenium(III) and 2-phenylpyridine. Dalton Trans 2024; 53:4194-4203. [PMID: 38323842 DOI: 10.1039/d3dt04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
There are few literature reports on using precatalysts based on ruthenium(II/III) ions in the polymerization of olefins. Therefore, a new coordination compound was designed based on ruthenium(III) ion and 2-phenylpyridine. The resulting monocrystal was characterized by X-ray diffraction (XRD), solid-state (photo)IR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The new ruthenium(III) complex compound was used as a precatalyst in the oligomerization reactions of ethylene, 2-propen-1-ol, 2-chloro-2-propen-1-ol, 3-butene-2-ol and 2,3-dibromo-2-propen-1-ol with methylaluminoxane and ethylaluminium dichloride as activators. The catalytic activity of the newly discovered ruthenium(III) complex compound ranges from 159.5 (for 2-chloro-2-propen-1-ol) to 755.6 (for ethylene) g mmol-1 h-1 bar-1, indicating that it is a chemical compound with high catalytic activity. In addition, the oligomerization reaction products were subjected to physicochemical characterization, using BET (Brunauer-Emmett-Teller isotherm), mass spectrometry (MALDI-TOF-MS), Fourier transform infrared (FT-IR) spectroscopy, NMR, TGA, differential scanning calorimetry (DSC), and the morphology of the porous polymeric materials was investigated by SEM. The distinguishing feature of the obtained precatalyst is its high catalytic activity under mild reaction conditions, a rare phenomenon. Compared with other precatalysts, it is the most active ruthenium(II/III) ion-based catalytic material used in oligo- and polymerization reactions of ethylene.
Collapse
Affiliation(s)
- Kacper Pobłocki
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Katarzyna N Jarzembska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Krystyna A Deresz
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Anna Gołąbiewska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Przemysław Rybiński
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
6
|
Liu Y, Lu XB. Current Challenges and Perspectives in CO 2-Based Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Metal-free multicomponent polymerization of activated diyne, electrophilic styrene and isocyanide towards highly substituted and functional poly(cyclopentadiene). Sci China Chem 2023. [DOI: 10.1007/s11426-022-1467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Jos S, Szwetkowski C, Slebodnick C, Ricker R, Chan KL, Chan WC, Radius U, Lin Z, Marder TB, Santos WL. Transition Metal-Free Regio- and Stereo-Selective trans Hydroboration of 1,3-Diynes: A Phosphine-Catalyzed Access to (E)-1-Boryl-1,3-Enynes. Chemistry 2022; 28:e202202349. [PMID: 35917135 PMCID: PMC9804376 DOI: 10.1002/chem.202202349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/05/2023]
Abstract
We report a transition metal-free, regio- and stereo-selective, phosphine-catalyzed method for the trans hydroboration of 1,3-diynes with pinacolborane that affords (E)-1-boryl-1,3-enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3-diyne framework as unambiguously established by NMR and X-ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 %). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle.
Collapse
Affiliation(s)
- Swetha Jos
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | | | - Carla Slebodnick
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | - Robert Ricker
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Ka Lok Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Wing Chun Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Udo Radius
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Zhenyang Lin
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Todd B. Marder
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | | |
Collapse
|
9
|
Chen Q, Ye J, Zhu L, Luo J, Cao X, Zhang Z. Organocatalytic multicomponent polymerization of bis(aziridine)s, diols, and tosyl isocyanate toward poly(sulfonamide urethane)s. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Guo L, Yan L, He Y, Feng W, Zhao Y, Tang BZ, Yan H. Hyperbranched Polyborate: A Non-conjugated Fluorescent Polymer with Unanticipated High Quantum Yield and Multicolor Emission. Angew Chem Int Ed Engl 2022; 61:e202204383. [PMID: 35499909 DOI: 10.1002/anie.202204383] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 12/23/2022]
Abstract
Non-conjugated fluorescent polymers have attracted great attention due to their excellent biocompatibility and environmental friendliness. However, it remains a huge challenge to obtain a polymer with high fluorescence quantum yield (QY) and multicolor emission simultaneously. Herein, we reported three kinds of nonaromatic hyperbranched polyborates (P1-P3) with multicolor emission, surprisingly, P2 also exhibits an unanticipated high QY (54.1 %). The natural bond orbital (NBO) analysis and density functional theory (DFT) calculation results revealed that the synergistic effect of rigid BO3 planar and flexible carbon chain, as well as the through-space dative bond in supramolecular aggregate, were the key factors contributing to the ultrahigh QY of P2. Moreover, the applications of P2 in Fe3+ ions detection and cell imaging were also investigated. This work provides a new perspective for designing non-conjugated fluorescent polymers with both high QY and multicolor emission.
Collapse
Affiliation(s)
- Liulong Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Lirong Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Yanyun He
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Weixu Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Yan Zhao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, China
| | - Hongxia Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
11
|
Tang S, Nozaki K. Advances in the Synthesis of Copolymers from Carbon Dioxide, Dienes, and Olefins. Acc Chem Res 2022; 55:1524-1532. [PMID: 35612595 DOI: 10.1021/acs.accounts.2c00162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ConspectusCarbon dioxide (CO2) has long been considered a sustainable comonomer for polymer synthesis due to its abundance, easy availability, and low toxicity. Polymer synthesis from CO2 is highly attractive and has received continuous interest from synthetic chemists. In this regard, alternating copolymerization of CO2 and epoxides is one of the most well-established methods to synthesize aliphatic polycarbonates. Moreover, binucleophiles including diols, diamines, amino alcohols, and diynes have been reported to copolymerize with CO2 to give polycarbonates, polyureas, polyurethanes, and polyesters, respectively. Nevertheless, little success has been made for incorporating CO2 into the most widely used polyolefin materials.Although extensive studies have been focused on the copolymerization of olefins and CO2, most of the attempted reactions resulted in olefin homopolymerization owing to the endothermic property and high energy barriers of CO2 insertion during the chain propagation process. In this Account, we show how this challenge is addressed by taking advantage of a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (EVP), which is produced from CO2 and butadiene via palladium catalysis. Homopolymerization of EVP furnishes CO2/butadiene copolymers with up to 29 wt % of CO2 content. This reaction strategy represents a breakthrough for the long-standing challenge of inherent kinetic and thermodynamically unfavorable CO2/olefin copolymerization. A new class of polymeric materials bearing repeating bicyclic lactone and unsaturated lactone units can be obtained. Importantly, one-pot copolymerization of CO2/butadiene or terpolymerization of CO2/butadiene/diene can be achieved to afford copolymers through a two-step reaction protocol. Interestingly, the bicyclic lactone units in the polymer chain can undergo ring-opening through hydrolysis and aminolysis, while reversible ring-closing of the hydrolyzed or aminolyzed units was also achieved simply by heating.Over the past few years, more and more studies have utilized EVP as an intermediate to synthesize copolymers from olefins, butadiene, and CO2. Recently, we successfully incorporated CO2 into the most widely used polyethylene materials via the direct copolymerization of EVP and ethylene. Taking advantage of the bifunctional reactivity of EVP, we were able to access two types of main-chain-functionalized polyethylenes through palladium-catalyzed coordination/insertion copolymerization and radical copolymerization. Besides polyethylenes, CO2 was also incorporated into poly(methyl methacrylate), poly(methyl acrylate), polystyrene, polymethyl acrylate, polyvinylchloroacetate, and poly(vinyl acetate) materials via radical copolymerization of EVP and olefin monomers. The EVP/olefin copolymerization strategy provides a novel avenue for the synthesis of highly versatile copolymers from an olefin, CO2, and butadiene.
Collapse
Affiliation(s)
- Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Guo L, Yan L, He Y, Feng W, Zhao Y, Tang BZ, Yan H. Hyperbranched Polyborate: A Non‐conjugated Fluorescent Polymer with Unanticipated High Quantum Yield and Multicolor Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liulong Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi, 710129 China
| | - Lirong Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi, 710129 China
| | - Yanyun He
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi, 710129 China
| | - Weixu Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi, 710129 China
| | - Yan Zhao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi, 710129 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Shenzhen Guangdong, 518172 China
| | - Hongxia Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi, 710129 China
| |
Collapse
|
13
|
Li B, Wang J, He B, Qin A, Tang BZ. Activated Internal
Alkyne‐Based
Polymerization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baixue Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
| | - Benzhao He
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences Beijing Normal University at Zhuhai Zhuhai 519085 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology, Clear Water Bay Kowloon Hong Kong, China
| |
Collapse
|
14
|
Wei Z, Chen D, Zhang X, Wang L, Yang W. Precise Synthesis of Structurally Diverse Aggregation-Induced Emission-Active Polyacrylates by Cu(0)-Catalyzed SET-LRP with Macromolecular Structure-Correlated Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiqiang Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
15
|
Hu R, Wang J, Qin A, Tang BZ. Aggregation-Induced Emission-Active Biomacromolecules: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:2185-2196. [PMID: 35171563 DOI: 10.1021/acs.biomac.1c01516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomacromolecules featuring aggregation-induced-emission (AIE) characteristics generally present new properties and performances that are silent in the molecular state, providing endless possibilities for the evolution of biomedical applications. Tremendous achievements based on the research of AIE-active biomacromolecules have been made in synthetic exploration, material development, and practical applications. In this Perspective, we give a brief account in the development of AIE-active biomacromolecules. Remarkable progresses have been made in the exploration of AIE-active biomacromolecule preparation, structure-property relationships, and the relevant biomedical applications. The existing challenges and promising opportunities, as well as the future directions in AIE-active biomacromolecule research, are also discussed. It is expected that this Perspective can act as a trigger for the innovation of AIE-active biomacromolecule research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
16
|
Hu X, Yu S, Yang G, Long W, Guo T, Tian J, Liu M, Li X, Zhang X, Wei Y. Facile synthesis of inorganic–organic hybrid fluorescent nanoparticles with AIE feature using hexachlorocyclotriphosphazene as the bridge. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Aggregation-induced emission active luminescent polymeric nanofibers: From design, synthesis, fluorescent mechanism to applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Arslan M. Multicomponent approach for the synthesis of functional copolymers via tandem polycondensations of isatoic anhydride, bisaldehydes and bisprimary amines in trifluoroethanol. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Garcia Espinosa LD, Williams-Pavlantos K, Turney KM, Wesdemiotis C, Eagan JM. Degradable Polymer Structures from Carbon Dioxide and Butadiene. ACS Macro Lett 2021; 10:1254-1259. [PMID: 35549034 DOI: 10.1021/acsmacrolett.1c00523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The utilization of carbon dioxide as a polymer feedstock is an ongoing challenge. This report describes the catalytic conversion of carbon dioxide and an olefin comonomer, 1,3-butadiene, into a polymer structure that arises from divergent propagation mechanisms. Disubstituted unsaturated δ-valerolactone 1 (EVL) was homopolymerized by the bifunctional organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to produce a hydrolytically degradable polymer. Isolation and characterization of reaction intermediates using 1H, 13C, COSY, HSQC, and MS techniques revealed a vinylogous 1,4-conjugate addition dimer forms in addition to polymeric materials. Polymer number-average molecular weights up to 3760 g/mol and glass transition temperatures in the range of 25-52 °C were measured by GPC and DSC, respectively. The polymer microstructure was characterized by 1H, 13C, FTIR, MALDI-TOF MS, and ESI tandem MS/MS. The olefin/CO2-derived materials depolymerized by hydrolysis at 80 °C in 1 M NaOH. This method and the observed chemical structures expand the materials and properties that can be obtained from carbon dioxide and olefin feedstocks.
Collapse
Affiliation(s)
- Luis D. Garcia Espinosa
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | | | - Keaton M. Turney
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Chrys Wesdemiotis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325-3909, Unites States
| | - James M. Eagan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
20
|
Song B, Li X, Qin A, Tang BZ. Direct Conversion from Carbon Dioxide to Luminescent Poly(β-alkoxyacrylate)s via Multicomponent Tandem Polymerization-Induced Emission. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xiangyi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
21
|
Liu D, Song B, Wang J, Li B, Wang B, Li M, Qin A, Tang BZ. CO 2-Involved and Isocyanide-Based Three-Component Polymerization toward Functional Heterocyclic Polymers with Self-Assembly and Sensing Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dongming Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Bo Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Baoxi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Mingzhao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Kowloon, Hong Kong 999077, China
| |
Collapse
|
22
|
Nozaki K. New Polymers Made from Carbon Dioxide and Alkenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Zhang J, Zhang Z, Wang J, Zang Q, Sun JZ, Tang BZ. Recent progress in the applications of amino–yne click chemistry. Polym Chem 2021. [DOI: 10.1039/d1py00113b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This mini-review summarizes the recent research studies on the application of the amino–yne click reaction in surface immobilization, construction of drug delivery systems, preparation of hydrogel materials and synthesis of functional polymers.
Collapse
Affiliation(s)
- Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhiming Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Centre for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
| | - Qiguang Zang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
25
|
Wang J, Qin A, Tang BZ. Multicomponent Polymerizations Involving Green Monomers. Macromol Rapid Commun 2020; 42:e2000547. [PMID: 33314433 DOI: 10.1002/marc.202000547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Green monomers, such as oxygen (O2 ), water (H2 O), and carbon dioxide (CO2 ), refer to a kind of natural reagents with abundant, nontoxic, cheap, environmentally friendly, renewable, and sustainable features. These monomers have been used in multicomponent polymerizations (MCPs) toward functional polymers. In this review, the recent development of MCPs involving green monomers of O2 -, H2 O-, and CO2 is summarized. The catalytic systems, polymerization conditions, the molecular weights, and potential applications of resultant polymers are briefly discussed. Furthermore, the existing challenges and the promising opportunities are concisely provided.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Huang Y, Xu L, Hu R, Tang BZ. Cu(I)-Catalyzed Heterogeneous Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and NH4Cl. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuzhang Huang
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Liguo Xu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
- AIE Institute, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Chen M, Qin A, Lam JW, Tang BZ. Multifaceted functionalities constructed from pyrazine-based AIEgen system. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Su X, Gao Q, Wang D, Han T, Tang BZ. One-Step Multicomponent Polymerizations for the Synthesis of Multifunctional AIE Polymers. Macromol Rapid Commun 2020; 42:e2000471. [PMID: 33000896 DOI: 10.1002/marc.202000471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Indexed: 01/01/2023]
Abstract
As a new class of functional luminescent materials, polymers with aggregation-induced emission (AIE) feature attract much attention because of their advantages of efficient solid-state fluorescence, excellent processability, structural diversity, and multifunctionalities. Among all polymerization methods toward AIE polymers, multicomponent polymerizations (MCPs) exhibit the merits of simple operation, good atom economy, high polymerization efficiency, broad functional-group tolerance, etc. In this feature article, the recent progress on the development of one-step MCPs for the synthesis of AIE polymers is highlighted. The representative functionalities of the resulting AIE polymers are illustrated. Perspectives on the challenges and future development directions of this field are also discussed.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qingqing Gao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Materials Science and Engineering, Xiamen University of Technology, Ligong Road No. 600, Jimei District, Xiamen, 361024, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Song B, Zhang R, Hu R, Chen X, Liu D, Guo J, Xu X, Qin A, Tang BZ. Site-Selective, Multistep Functionalizations of CO 2-Based Hyperbranched Poly(alkynoate)s toward Functional Polymetric Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000465. [PMID: 32995119 PMCID: PMC7507432 DOI: 10.1002/advs.202000465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/23/2020] [Indexed: 05/05/2023]
Abstract
Hyperbranched polymers constructed from CO2 possess unique architectures and properties; however, they are difficult to prepare. In this work, CO2-based, hyperbranched poly(alkynoate)s (hb-PAs) with high molecular weights and degrees of branching are facilely prepared under atmospheric pressure in only 3 h. Because hb-PAs possess two types of ethynyl groups with different reactivities, they can undergo site-selective, three-step functionalizations with nearly 100% conversion in each step. Taking advantage of this unique feature, functional hb-PAs with versatile properties are constructed that could be selectively tailored to contain hydrophilic oligo(ethylene glycol) chains in their branched chains, on their periphery, or both via tandem polymerizations. Hyperbranched polyprodrug amphiphiles with high drug loading content (44.3 wt%) are also generated, along with an artificial light-harvesting system with high energy transfer efficiency (up to 92%) and white-light-emitting polymers. This work not only provides an efficient pathway to convert CO2 into hyperbranched polymers, but also offers an effective platform for site-selective multistep functionalizations toward functional polymeric materials.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
| | - Rongyuan Zhang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
- Department of UrologyThe First Affiliated Hospital of Soochow University188 Shizi RDSuzhou215006China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
| | - Xu Chen
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
| | - Dongming Liu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
| | - Jiali Guo
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
| | - Xiaotian Xu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation‐Induced EmissionSouth China University of TechnologyGuangzhou510640China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced Studyand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong KongChina
| |
Collapse
|
30
|
Liu X, Han T, Lam JWY, Tang BZ. Functional Heterochain Polymers Constructed by Alkyne Multicomponent Polymerizations. Macromol Rapid Commun 2020; 42:e2000386. [DOI: 10.1002/marc.202000386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ting Han
- HKUST‐Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi‐tech Park Nanshan Shenzhen 518057 P. R. China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Center for Aggregation‐Induced Emission SCUT‐HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute Guangzhou Development District, Huangpu Guangzhou 510530 China
| |
Collapse
|
31
|
Song B, Qin AJ, Tang BZ. Green Monomer of CO2 and Alkyne-based Four-component Tandem Polymerization toward Regio- and Stereoregular Poly(aminoacrylate)s. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2454-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
He B, Zhang J, Zhang H, Liu Z, Zou H, Hu R, Qin A, Kwok RTK, Lam JWY, Tang BZ. Catalyst-Free Multicomponent Tandem Polymerizations of Alkyne and Amines toward Nontraditional Intrinsic Luminescent Poly(aminomaleimide)s. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Benzhao He
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hang Zou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rong Hu
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| |
Collapse
|
33
|
Chen X, Bai T, Hu R, Song B, Lu L, Ling J, Qin A, Tang BZ. Aroylacetylene-Based Amino-Yne Click Polymerization toward Nitrogen-Containing Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xu Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Bo Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Lin Lu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon , Hong Kong 999077, China
| |
Collapse
|
34
|
|
35
|
Polymers from Carbon Dioxide—A Route Towards a Sustainable Future. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2020. [DOI: 10.1007/978-981-15-1251-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Han T, Yao Z, Qiu Z, Zhao Z, Wu K, Wang J, Poon AW, Lam JWY, Tang BZ. Photoresponsive spiro-polymers generated in situ by C-H-activated polyspiroannulation. Nat Commun 2019; 10:5483. [PMID: 31792223 PMCID: PMC6889291 DOI: 10.1038/s41467-019-13308-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
Abstract
The development of facile and efficient polymerizations toward functional polymers with unique structures and attractive properties is of great academic and industrial significance. Here we develop a straightforward C-H-activated polyspiroannulation route to in situ generate photoresponsive spiro-polymers with complex structures. The palladium(II)-catalyzed stepwise polyspiroannulations of free naphthols and internal diynes proceed efficiently in dimethylsulfoxide at 120 °C without the constraint of apparent stoichiometric balance in monomers. A series of functional polymers with multisubstituted spiro-segments and absolute molecular weights of up to 39,000 are produced in high yields (up to 99%). The obtained spiro-polymers can be readily fabricated into different well-resolved fluorescent photopatterns with both turn-off and turn-on modes based on their photoinduced fluorescence change. Taking advantage of their photoresponsive refractive index, we successfully apply the polymer thin films in integrated silicon photonics techniques and achieve the permanent modification of resonance wavelengths of microring resonators by UV irradiation.
Collapse
Affiliation(s)
- Ting Han
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanshi Yao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zijie Qiu
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kaiyi Wu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianguo Wang
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Andrew W Poon
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China. .,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China. .,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
37
|
Song B, Bai T, Xu X, Chen X, Liu D, Guo J, Qin A, Ling J, Tang BZ. Multifunctional Linear and Hyperbranched Five-Membered Cyclic Carbonate-Based Polymers Directly Generated from CO2 and Alkyne-Based Three-Component Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00898] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bo Song
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaotian Xu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xu Chen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Dongming Liu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jiali Guo
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Synthesis and Properties of Photodegradable Poly(furan-amine)s by a Catalyst-free Multicomponent Cyclopolymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2281-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Liu R, Liu X, Ouyang K, Yan Q. Catalyst-Free Click Polymerization of CO 2 and Lewis Monomers for Recyclable C1 Fixation and Release. ACS Macro Lett 2019; 8:200-204. [PMID: 35619430 DOI: 10.1021/acsmacrolett.9b00066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conversion of carbon dioxide (CO2) into valuable chemicals in gentle conditions is a great challenge in sustainable and energy chemistry. Here we report a CO2-participated polymerization using frustrated Lewis pair (FLP) as the monomer, which allows us to obtain well-defined CO2/FLP alternating copolymers with high molecular weights (∼50000) and quantitative conversions (∼95%), resembling a "click" polymerization of CO2 gas and FLP molecules. In comparison to other CO2-based polymerizations, this method features spontaneity, catalyst-free, and speediness, as well as can realize in ambient temperature (20 °C) and low CO2 pressure conditions (1.0 atm). Moreover, owing to the dynamic covalent bonding between CO2 and FLP unit, such a class of alternating copolymers upon heating can depolymerize into initial monomers and release CO2, which could make them as recyclable smart materials for reversible C1 fixation and release.
Collapse
Affiliation(s)
- Renjie Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Kunbing Ouyang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
40
|
Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Advances in the use of CO 2 as a renewable feedstock for the synthesis of polymers. Chem Soc Rev 2019; 48:4466-4514. [PMID: 31276137 DOI: 10.1039/c9cs00047j] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon dioxide offers an accessible, cheap and renewable carbon feedstock for synthesis. Current interest in the area of carbon dioxide valorisation aims at new, emerging technologies that are able to provide new opportunities to turn a waste into value. Polymers are among the most widely produced chemicals in the world greatly affecting the quality of life. However, there are growing concerns about the lack of reuse of the majority of the consumer plastics and their after-life disposal resulting in an increasing demand for sustainable alternatives. New monomers and polymers that can address these issues are therefore warranted, and merging polymer synthesis with the recycling of carbon dioxide offers a tangible route to transition towards a circular economy. Here, an overview of the most relevant and recent approaches to CO2-based monomers and polymers are highlighted with particular emphasis on the transformation routes used and their involved manifolds.
Collapse
Affiliation(s)
- Bruno Grignard
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium.
| | | | | | | | | |
Collapse
|
41
|
Xiang L, Li Z, Liu J, Chen J, Zhang M, Wu Y, Zhang K. Periodic polymers based on a self-accelerating click reaction. Polym Chem 2018. [DOI: 10.1039/c8py00645h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-accelerating click chemistry was used to prepare sequence-controlled periodic polymers with ultrahigh molecular weights or a cyclic molecular topology.
Collapse
Affiliation(s)
- Lue Xiang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zi Li
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jian'an Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jiqiang Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Minghui Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ying Wu
- Institute of Polymer Chemistry and Physics
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
42
|
Fu W, Dong L, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Multicomponent spiropolymerization of diisocyanides, alkynes and carbon dioxide for constructing 1,6-dioxospiro[4,4]nonane-3,8-diene as structural units under one-pot catalyst-free conditions. Polym Chem 2018. [DOI: 10.1039/c8py01336e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel multicomponent spiropolymerization was developed by using diisocyanide, alkyne and CO2, and 1,6-dioxospiro[4,4]nonane-3,8-diene was instantly formed.
Collapse
Affiliation(s)
- Weiqiang Fu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Lichao Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|