1
|
Yan J, Zhu J, Tong S, Wang Q, Wang Z. Engineering Nanoporous Polyaminal Networks for Superior SO 2 Capture and Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359234 DOI: 10.1021/acsami.4c14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Designing adsorbent materials with high SO2 adsorption capacities and selectivity remains a significant challenge in flue gas desulfurization. This work focuses on developing two nitrogen-rich nanoporous polyaminal networks (NPANs), which demonstrate promising capabilities for SO2 adsorption and separation. Two nitrogen-rich nanoporous polyaminal networks, NPAN-5 and NPAN-6, were synthesized via a one-pot method using thiophene-2,5-dicarbaldehyde and furan-2,5-dicarbaldehyde with 1,4-bis(2,4-diamino-1,3,5-triazine)-benzene, respectively. The Brunauer-Emmett-Teller (BET) specific surface areas of NPANs range from 838 to 956 m2·g-1. At 298 K and pressures of 0.1 and 1.0 bar, NPAN-5, featuring thiophene units, demonstrates a SO2 adsorption uptake of 5.14 and 9.63 mmol·g-1, respectively, surpassing many previously reported materials. Furthermore, at room temperature, NPAN-6, containing furan moieties, exhibits unprecedented selectivity for SO2 over CO2 and N2, with ratios reaching up to 78 and 9321, respectively. Dynamic breakthrough experiments reveal that NPANs effectively separate SO2 from a ternary gas mixture comprising SO2, CO2, and N2 at concentrations of 0.2, 10, and 89.8%, respectively. Notably, NPAN-6 achieves a prolonged SO2 retention time of 218 min·g-1 and a saturation adsorption uptake of 0.42 mmol·g-1. The remarkable SO2 adsorption capacities and selectivities demonstrated by these nitrogen-rich nanoporous polyaminal networks underscore their potential to revolutionize industrial flue gas desulfurization.
Collapse
Affiliation(s)
- Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiangli Zhu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Sihan Tong
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Qilin Wang
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Zefeng Wang
- College of Ecology, Lishui University, Lishui 323000, China
- R&D Center of Green Manufacturing New Materials and Technology of Synthetic Leather Sichuan University-Lishui University, Lishui 323000, China
| |
Collapse
|
2
|
Zhang X, Hao N, Liu S, Wei K, Ma C, Pan J, Feng S. Direct and specific detection of methyl-paraoxon using a highly sensitive fluorescence strategy combined with phosphatase-like nanozyme and molecularly imprinted polymer. Talanta 2024; 277:126434. [PMID: 38879946 DOI: 10.1016/j.talanta.2024.126434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Methyl paraoxon (MP) is a highly toxic, efficient and broad-spectrum organophosphorus pesticide, which poses significant risks to ecological environment and human health. Many detection methods for MP are based on the enzyme catalytic or inhibition effect. But natural biological enzymes are relatively expensive and easy to be inactivated with a short service life. As a unique tool of nanotechnology with enzyme-like characteristics, nanozyme has attracted increasing concern. However, a large proportion of nanozymes lack the intrinsic specificity, becoming a main barrier of constraining their use in biochemical analysis. Here, we use a one-pot reverse microemulsion polymerization combine the gold nanoclusters (AuNCs) with molecularly imprinted polymers (MIPs), polydopamine (PDA) and hollow CeO2 nanospheres to synthesize the bright red-orange fluorescence probe (CeO2@PDA@AuNCs-MIPs) with high phosphatase-like activity for selective detection of MP. The hollow structure possesses a specific surface area and porous matrix, which not only increases the exposure of active sites but also enhances the efficiency of mass and electron transport. Consequently, this structure significantly enhances the catalytic activity by reducing transport distances. The introduced MIPs provide the specific recognition sites for MP. And Ce (III) can excite aggregation induced emission of AuNCs and enhance the fluorescent signal. The absolute fluorescence quantum yield (FLQY) of CeO2@PDA@AuNCs-MIPs (1.41 %) was 12.8-fold higher than that of the GSH-AuNCs (0.11 %). With the presence of MP, Ce (IV)/Ce (III) species serve as the active sites to polarize and hydrolyze phosphate bonds to generate p-nitrophenol (p-NP), which can quench the fluorescent signal through the inner-filter effect. The as-prepared CeO2@PDA@AuNCs-MIPs nanozyme-based fluorescence method for MP detection displayed superior analytical performances with wide linearities range of 0.45-125 nM and the detection limit of 0.15 nM. Furthermore, the designed method offers satisfactory practical application ability. The developed method is simple and effective for the in-field detection.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Information Science &Technology 211800, China.
| | - Shucheng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Wei
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China
| | - Changchang Ma
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Sheng Feng
- School of Environmental Science and Engineering, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
3
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
4
|
Liu W, Zheng P, Xia Y, Li F, Zhang M. A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform. Talanta 2024; 269:125352. [PMID: 37984233 DOI: 10.1016/j.talanta.2023.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The threat from pesticide trifluralin residues to ecological environment and public health is becoming a growing problem. Thus, rapid and sensitive detection, particularly a simple and portable detected platform for trifluralin residues, are highly desired. Here, a small organic aggregation-induced emission (AIE) molecule (TPETPy) is facilely synthesized and applied to detect trifluralin both in lab and in actual water systems. Based on the photo-induced electron transfer (PET) mechanism, the emissive peak of TPETPy located at 475 nm in tetrahydrofuran (THF)/water mixture (ƒw = 90 %) under the excitation of 340 nm, decreases dramatically upon trace trifluralin addition and exhibits ultra-fast response (3 s), high sensitivity and selectivity, and good anti-interference ability. The fluorescence sensing correlation with the concentration of trifluralin shows good linearity in the range of 20-90 μg L-1 with the limit of detection of 6.28 μg L-1. Moreover, a portable smartphone-integrated detected platform based on fluorescent pattern Red/Green/Blue (RGB) values is first employed to realize the real-time and on-site quantitative fluorescent detection of trifluralin in actual water sources, featuring good accuracy and reproducibility. Hereby, this work provides not only a highly efficient trifluralin residues fluorescent probe but also a portable and straightforward operating platform to detect trifluralin pesticides quantitatively.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuanxing Xia
- Department of Fundamental Study of Public Security, Criminal Investigation Police University of China, Shenyang, 110854, PR China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
6
|
Yan J, Tong S, Sun H, Guo S. Highly Efficient Separation of C1−C3 Alkanes and CO2 in Carbazole-Based Nanoporous Organic Polymers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Yau AM, Khaligh A, Tuncel D. Triazine/thiophene‐based microporous organic polymer for electrocatalytic hydrogen evolution reaction. J Appl Polym Sci 2022. [DOI: 10.1002/app.53492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arma Musa Yau
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Aisan Khaligh
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
- Department of Chemistry Bilkent University Ankara Turkey
| | - Dönüs Tuncel
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
- Department of Chemistry Bilkent University Ankara Turkey
| |
Collapse
|
8
|
A chemiluminescent probe for highly sensitive detection of trifluralin based on cobalt ion-complexed boron nitride quantum dots as efficient nanocatalysts. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Cui B, Gao C, Fan J, Liu J, Feng B, Ruan X, Yang Y, Yuan Y, Chu K, Yan Z, Xia L. Integrating a Luminescent Porous Aromatic Framework into Indicator Papers for Facile, Rapid, and Selective Detection of Nitro Compounds. Molecules 2022; 27:molecules27196252. [PMID: 36234789 PMCID: PMC9572729 DOI: 10.3390/molecules27196252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Porous aromatic framework materials with high stability, sensitivity, and selectivity have great potential to provide new sensors for optoelectronic/fluorescent probe devices. In this work, a luminescent porous aromatic framework material (LNU-23) was synthesized via the palladium-catalyzed Suzuki cross-coupling reaction of tetrabromopyrene and 1,2-bisphenyldiborate pinacol ester. The resulting PAF solid exhibited strong fluorescence emission with a quantum yield of 18.31%, showing excellent light and heat stability. Because the lowest unoccupied molecular orbital (LUMO) of LNU-23 was higher than that of the nitro compounds, there was an energy transfer from the excited LNU-23 to the analyte, leading to the selective fluorescence quenching with a limit of detection (LOD) ≈ 1.47 × 10−5 M. After integrating the luminescent PAF powder on the paper by a simple dipping method, the indicator papers revealed a fast fluorescence response to gaseous nitrobenzene within 10 s, which shows great potential in outdoor fluorescence detection of nitro compounds.
Collapse
Affiliation(s)
- Bo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Changyuan Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiating Fan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jinni Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Bin Feng
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xianghui Ruan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kuo Chu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| | - Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| |
Collapse
|
10
|
Yan J, Tan Y, Wei L, Liu Z, Wang Q, Sun H, Wang Z, Li D, Qian Y, Guo S. Friedel–Crafts Synthesis of Carbazole-Based Hierarchical Nanoporous Organic Polymers for Adsorption of Ethane, Carbon Dioxide, and Methane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Yan
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Yan Tan
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Lulu Wei
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zhenhua Liu
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Qilin Wang
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Haiyu Sun
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dan Li
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Yongqiang Qian
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Shengwei Guo
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| |
Collapse
|
11
|
Zhong P, Wu J, Wu J, Liu K, Wan C, Liu JB. Solvent-controlled selective synthesis of amides and thioureas from isothiocyanates. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Yan J, Guo Y, Xie S, Wang Q, Leng Z, Li D, Qi K, Sun H. Facile Preparation of Cost‐Effective Triphenylamine‐Based Nanoporous Organic Polymers for CO
2
, I
2
, and Organic Solvents Capture. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Yan
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Yide Guo
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Siyu Xie
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Qilin Wang
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Zesong Leng
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Dan Li
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Kangru Qi
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Haiyu Sun
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| |
Collapse
|
14
|
Wang S, Li H, Huang H, Cao X, Chen X, Cao D. Porous organic polymers as a platform for sensing applications. Chem Soc Rev 2022; 51:2031-2080. [PMID: 35226024 DOI: 10.1039/d2cs00059h] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sensing analysis is significantly important for human health and environmental safety, and has gained increasing concern. As a promising material, porous organic polymers (POPs) have drawn widespread attention due to the availability of plentiful building blocks and their tunable structures, porosity and functions. Moreover, the permanent porous nature could provide a micro-environment to interact with guest molecules, rendering POPs attractive for application in the sensing field. In this review, we give a comprehensive overview of POPs as a platform for sensing applications. POP-based sensors are mainly divided into five categories, including fluorescence turn-on sensors, fluorescence turn-off sensors, ratiometric fluorescent sensors, colorimetric sensors and chemiresistive sensors, and their various sensing applications in detecting explosives, metal ions, anions, small molecules, biological molecules, pH changes, enantiomers, latent fingerprints and thermosensation are summarized. The different structure-based POPs and their corresponding synthetic strategies as well as the related sensing mechanisms mainly including energy transfer, donor-acceptor electron transfer, absorption competition quenching and inner filter effect are also involved in the discussion. Finally, the future outlook and perspective are addressed briefly.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huanan Huang
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiaohua Cao
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiudong Chen
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Melendrez C, Lopez-Rosas JA, Stokes CX, Cheung TC, Lee SJ, Titus CJ, Valenzuela J, Jeanpierre G, Muhammad H, Tran P, Sandoval PJ, Supreme T, Altoe V, Vavra J, Raabova H, Vanek V, Sainio S, Doriese WB, O'Neil GC, Swetz DS, Ullom JN, Irwin K, Nordlund D, Cigler P, Wolcott A. Metastable Brominated Nanodiamond Surface Enables Room Temperature and Catalysis-Free Amine Chemistry. J Phys Chem Lett 2022; 13:1147-1158. [PMID: 35084184 PMCID: PMC10655229 DOI: 10.1021/acs.jpclett.1c04090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bromination of high-pressure, high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming, and most researchers simply use oxygen-terminated NDs (alcohols and acids) as reactive species. In this work, we transformed a tertiary-alcohol-rich ND surface to an amine surface with ∼50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl bromide moieties are highly labile on HPHT NDs and are metastable as previously found using density functional theory. The strong leaving group properties of the alkyl bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. This robust pathway to activate a chemically inert ND surface broadens the modalities for surface termination, and the unique surface properties of brominated and aminated NDs are impactful to researchers for chemically tuning diamond for quantum sensing or biolabeling applications.
Collapse
Affiliation(s)
- Cynthia Melendrez
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Jorge A Lopez-Rosas
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Camron X Stokes
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Tsz Ching Cheung
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Sang-Jun Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Charles James Titus
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Stanford University, Palo Alto, California 94025, United States
| | - Jocelyn Valenzuela
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Grace Jeanpierre
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Halim Muhammad
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Polo Tran
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Perla Jasmine Sandoval
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Tyanna Supreme
- Department of Chemistry, San José State University, San José, California 95192, United States
| | - Virginia Altoe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jan Vavra
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Vaclav Vanek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Sami Sainio
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland 90014
| | - William B Doriese
- Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Galen C O'Neil
- Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Daniel S Swetz
- Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Joel N Ullom
- Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Kent Irwin
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Stanford University, Palo Alto, California 94025, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Abraham Wolcott
- Department of Chemistry, San José State University, San José, California 95192, United States
| |
Collapse
|
16
|
Li W, Tang J, Wang Z. Micro-/Mesoporous Fluorescent Polymers and Devices for Visual Pesticide Detection with Portability, High Sensitivity, and Ultrafast Response. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5815-5824. [PMID: 35044158 DOI: 10.1021/acsami.1c21658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The residue of pesticides in crops, soil, and water continues to be a widespread concern due to the threat to human health and food safety. With the aim to develop highly sensitive sensing materials and portable detection devices, two dicarbazole-based fluorescent micro-/mesoporous polymers (JYs) with a larger specific surface area and pore sizes ranging from 1.1 to 34.2 nm are synthesized. The Stern-Volmer constants of JY fluorescence quenching for imidacloprid (50,063 M-1) exceed 23-51 times those of the reported porous organic polymers (980-2173 M-1). Of particular interest is the observation that JYs show rapid fluorescence response (2 s) and ultralow detection limit (30 ppb) for imidacloprid in water medium. The pronounced chemsensing property is attributed to the synergistic role of the hierarchical pore structure, large π-conjugation of chromophore groups, and strong inner filter effect between the polymer and imidacloprid molecule. Moreover, the pesticide detection of JYs exhibits good interference resistance in complicated service environments such as the extract liquids of the apple peel and field soil as well as aqueous solutions of various cations and anions. Because of the portability, excellent reusability, and sensitive fluorescence response, the prepared JYs and detection devices have promising applications in the on-site monitoring and early warning of the pesticide residues.
Collapse
Affiliation(s)
- Weizhong Li
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinyu Tang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Yan J, Liu Z, Sun H, Tong S, Guo S. A facile one-pot preparation of porphyrin-based microporous organic polymers for adsorption of carbon dioxide, ethane, and methane. NEW J CHEM 2022. [DOI: 10.1039/d2nj03749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achieving a cost-effective preparation of 3D porphyrin-based microporous organic polymers (PMOPs) for the adsorption and separation of carbon dioxide (CO2), ethane (C2H6), and methane (CH4) remains difficult.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zhenghua Liu
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Haiyu Sun
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Sihan Tong
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Shengwei Guo
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| |
Collapse
|
18
|
Bhalla V, Devi M, Sharma P, Kumar A, Kaur S, Kumar M. ESIPT Active Assemblies for 'On-On' Detection, Cell Imaging and Hampering Cellular Activity of 2, 6-dichloro-4-nitroaniline. Chem Asian J 2021; 17:e202101219. [PMID: 34942037 DOI: 10.1002/asia.202101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/19/2021] [Indexed: 11/05/2022]
Abstract
NIR-emissive ESIPT active PBI-keto/enol assemblies have been developed for the detection of 2, 6-dichloro-4-nitroaniline (DCN). These assemblies show 'on-on' optical response towards DCN due to combined ESIPT-AIEE phenomenon with a detection limit of 1.65 nM. The potential of PBI-keto/enol assemblies to detect DCN has also been explored in grapes juice/grape residue, and soil for six consecutive days. Further, the biological applications of PBI-keto/enol assemblies to detect DCN in blood serum and to image DCN in live cells and to restrict the DCN induced cell death has been demonstrated in MG-63 cell lines.
Collapse
Affiliation(s)
- Vandana Bhalla
- Guru Nanak Dev University, Amritsar, Chemistry, Assistant Professor, Department of Chemistry,, Guru Nanak Dev University, Amritsar, Punjab, 143005, AMRITSAR, INDIA
| | - Minakshi Devi
- Guru Nanak Dev University, Amritsar, Chemistry, INDIA
| | - Pooja Sharma
- Guru Nanak Dev University, Amritsar, Department of Chemistry, INDIA
| | - Ajay Kumar
- Guru Nanak Dev University, Amritsar, Botanical and Enviormental Sciences, INDIA
| | - Satwinderjeet Kaur
- Guru Nanak Dev University, Department of botanical and environmental sciences, INDIA
| | - Manoj Kumar
- Guru Nanak Dev University Department of Chemistry, Department of Chemistry, Amritsar, INDIA
| |
Collapse
|
19
|
Wang J, Xia T, Lan Z, Liu G, Hou S, Hou S. Facile synthesis of an aggregation-induced emission (AIE) active imidazoles for sensitive detection of trifluralin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119880. [PMID: 33965889 DOI: 10.1016/j.saa.2021.119880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
A novel imidazoles fluorescent probe (2) was synthesized from vanillin, o-phenylenediamine, and N,N-diphenylcarbamyl chloride. Its structure was characterized by fluorescence spectra, UV-Vis spectra, 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS). Moreover, its aggregation-induced emission (AIE) feature was investigated in THF/MeOH solution. Furthermore, the fluorescence quenching experimental results suggest that compound 2 is the potential fluorescent probe of small organic molecules showing high selectivity and sensitivity for nitroaromatic compounds. In addition, the probe could be applied in the determination of trifluralin with fast response and stability. The fluorescence response of the probe exhibited a good linear correlation with the concentration of trifluralin ranging from 10 to 100 μM, and the limit of detection (LOD) was as low as 5.066 μM. Finally, the probe was successfully utilized to determine the amount of trifluralin in real samples, and the recoveries were 91.1% to 111.2%, indicating the applicability and reliability of the probe.
Collapse
Affiliation(s)
- Junjie Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Tianzi Xia
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Zhenni Lan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Guangyan Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China.
| | - Shifeng Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China; National Engineering and Technology Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
20
|
Gori M, Thakur A, Sharma A, Flora SJS. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides. Top Curr Chem (Cham) 2021; 379:33. [PMID: 34346011 DOI: 10.1007/s41061-021-00345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
Organophosphorus (OP) compounds are typically a broad class of compounds that possess various uses such as insecticides, pesticides, etc. One of the most evil utilizations of these compounds is as chemical warfare agents, which pose a greater threat than biological weapons because of their ease of access. OP compounds are highly toxic compounds that cause irreversible inhibition of enzyme acetylcholinesterase, which is essential for hydrolysis of neurotransmitter acetylcholine, leading to series of neurological disorders and even death. Due to the extensive use of these organophosphorus compounds in agriculture, there is an increase in the environmental burden of these toxic chemicals, with severe environmental consequences. Hence, the rapid and sensitive, selective, real-time detection of OP compounds is very much required in terms of environmental protection, health, and survival. Several techniques have been developed over a few decades to easily detect them, but still, numerous challenges and problems remain to be solved. Major advancement has been observed in the development of sensors using the spectroscopic technique over recent years because of the advantages offered over other techniques, which we focus on in the presented review.
Collapse
Affiliation(s)
- Muskan Gori
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
21
|
Kokulnathan T, Wang TJ, Duraisamy N, Kumar EA. Hierarchical nanoarchitecture of zirconium phosphate/graphene oxide: Robust electrochemical platform for detection of fenitrothion. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125257. [PMID: 33548779 DOI: 10.1016/j.jhazmat.2021.125257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
We report the rational design of nanocomposite with zirconium phosphate encapsulated on graphene oxide (ZrP/GO) for the highly sensitive and selective analysis of fenitrothion (FT). The characteristics of ZrP/GO nanocomposite are systematically analyzed by various in-depth electron microscopic, spectroscopic and analytical techniques. The ZrP/GO nanocomposite modified electrodes show better electrochemical response towards FT than other electrodes. The improved electrochemical activity of nanocomposite is attributed to large surface area, high conductivity, numerous active surface sites, GO nanosheets served as the conductivity matrix while preventing ZrP from agglomeration and the synergistic effect of ZrP and GO. Benefitting from the unique features, our fabricated sensor exhibits the superior performance in terms of wide working range (0.008-26 μM), appropriate peak potential (-0.61 V), low limit of detection (0.001 µM), high sensitivity (6 µA µM-1 cm-2) with the regression coefficient of 0.999. Additionally, the electrochemical sensor also displays good selectivity, excellent stability (99.6%), reproducibility (4.9%) and reusability (6.1%). The practical applicability of ZrP/GO sensor is shown by performing the detection of FT in water samples. These results clearly suggest that the ZrP/GO nanocomposite is an efficient electrode material for the future real-time environmental monitoring of FT.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.
| | | | - Elumalai Ashok Kumar
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| |
Collapse
|
22
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
23
|
Sharma P, Kumar M, Bhalla V. "Metal-Free" Fluorescent Supramolecular Assemblies for Distinct Detection of Organophosphate/Organochlorine Pesticides. ACS OMEGA 2020; 5:19654-19660. [PMID: 32803060 PMCID: PMC7424749 DOI: 10.1021/acsomega.0c02315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
The "metal-free", easy-to-prepare fluorescent supramolecular assemblies based on anthracene/perylene bisamide (PBI) derivatives have been developed for the distinct detection of organophosphate (CPF) and organochlorine (DCN) pesticides in aqueous media. The supramolecular assemblies of anthracene derivative show rapid and highly selective "on-on" response toward organophosphate (CPF), which is attributed to the formation of CPF-induced formation of "closely packed" assemblies. A detection limit in the nanomolar range is observed for CPF. On the other hand, the inner filter effect is proposed as the mechanism for the "on-off" detection of DCN using supramolecular assemblies of the anthracene derivative. This is the first report on the development of fluorescent materials having the potential to differentiate between organophosphate and organochlorine pesticides. The assemblies of anthracene derivative 2 also act as "enzyme mimic" as organophosphate pesticide show a preferential affinity for assemblies of derivative 2 over acetylcholinesterase enzyme. Further, the real-time applications of supramolecular assemblies have also been explored for the detection of CPF and DCN in spiked water and in agricultural products such as grapes and apples.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Chemistry,
UGC Sponsored Centre of Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry,
UGC Sponsored Centre of Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry,
UGC Sponsored Centre of Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
24
|
Li G, Wang Z. Micro- and Ultramicroporous Polyaminals for Highly Efficient Adsorption/Separation of C 1-C 3 Hydrocarbons and CO 2 in Natural Gas. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24488-24497. [PMID: 32406666 DOI: 10.1021/acsami.0c04378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents a series of micro- and ultramicroporous polyaminals with BET surface areas up to 1304 m2 g-1, which are prepared from two triazine-based tetraamines and three dialdehydes or monoaldehyde through the A4 + B2 or A4 + B1 aminalization reaction. It is interesting to find that the para-substituted monomers are favorable to force the linking struts apart in the network to generate micropores (1.22 nm), whereas the meta-substituted monomers make the pores in the network squeezed by the twisted linking struts, resulting in the formation of ultramicropores (0.52 nm). Besides, the adsorption behaviors of the major components of natural gas, such as propane (C3H8), ethane (C2H6), methane (CH4), and carbon dioxide (CO2), are significantly different, strongly depending on the polarizabilities, critical temperatures, molecular sizes of gases, porosity parameters of polymers, and the interaction between gases and the polymer skeleton. At 298 K/1 bar, the polymers show high uptake for C3H8 (114.5 cm3 g-1) and C2H6 (84.2 cm3 g-1). Moreover, the adsorption selectivities of C3H8/CH4, C2H6/CH4, C3H8/C2H6, C3H8/CO2, C2H6/CO2, and CO2/CH4 also reach 296.3, 23.1, 9.0, 22.1, 4.1, and 5.0, respectively, exhibiting promising applications in adsorption/separation of C1-C3 hydrocarbons and stripping CO2 gas from natural gas under the ambient condition.
Collapse
Affiliation(s)
- Gen Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Liu C, Xia M, Zhang M, Yuan K, Hu F, Yu G, Jian X. One-pot synthesis of nitrogen-rich aminal- and triazine-based hierarchical porous organic polymers with highly efficient iodine adsorption. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Lai Z, Guo X, Cheng Z, Ruan G, Du F. Green Synthesis of Fluorescent Carbon Dots from Cherry Tomatoes for Highly Effective Detection of Trifluralin Herbicide in Soil Samples. ChemistrySelect 2020. [DOI: 10.1002/slct.201904517] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhan Lai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Xinyuan Guo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhenfang Cheng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
- College of Biological and Environmental Engineering Changsha University Changsha 410022 PR China
| |
Collapse
|
27
|
Zhang B, Li B, Wang Z. Creation of Carbazole-Based Fluorescent Porous Polymers for Recognition and Detection of Various Pesticides in Water. ACS Sens 2020; 5:162-170. [PMID: 31927991 DOI: 10.1021/acssensors.9b01954] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of sensitive, fast, and portable methods for detecting the residual toxic pesticides is essentially important because of the increasing concerns for public health and safety. For this purpose, three fluorescent porous organic polymers containing pendant N-benzyl carbazole, N-benzyl dibromo-carbazole, and N-benzyl dimethoxy-carbazole groups were synthesized via a one-step polymerization reaction. The resultant polymers emit bright cyan, blue, and green light under the ultraviolet lamp, respectively, with the Brunauer-Emmett-Teller area up to 858 m2 g-1 and tunable pore sizes in the range of 0.5-36 nm. Six pesticides including trifluralin, isopropalin, glyphosate, fenitrothion, imidacloprid, and cyfluothrin are selected as the analytes to investigate the recognition and detection ability of polymers in terms of the different photo-physical properties of polymers, chemical structure of organic pesticides as well as the pore sizes of polymers, and molecular sizes of pesticides. It is interesting to find that, even though in water medium, the measured fluorescent quenching Stern-Volmer coefficient for trifluralin still reaches 26,040 L mol-1 and is nearly unchanged under both acidic or basic service conditions. Moreover, the test paper prepared from the polymer exhibits a rapid fluorescent response when contacting the aqueous trifluralin dispersion liquid, and the sensitivity remains stable after recycling use for twelve times.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Bin Li
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
28
|
Zhang S, Li X, Gong W, Sun T, Wang Z, Ning G. Pillar[5]arene-Derived Microporous Polyaminal Networks with Enhanced Uptake Performance for CO2 and Iodine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiyue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaohan Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| | - Tianjun Sun
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Marine Engineering College of Dalian Maritime University, Dalian 116023, P. R. China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| |
Collapse
|
29
|
Shetty S, Baig N, Al-Mousawi S, Al-Sagheer F, Alameddine B. Synthesis of secondary arylamine copolymers with Iron(II) clathrochelate units and their functionalization into tertiary Polyarylamines via Buchwald-Hartwig cross-coupling reaction. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Zeng W, Zhang Y, Zhao X, Qin M, Li X, Jin W, Zhang D. One-pot synthesis of conjugated microporous polymers based on extended molecular graphenes for hydrogen storage. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Zhang B, Yan J, Li G, Wang Z. Cost-effective preparation of microporous polymers from formamide derivatives and adsorption of CO2 under dry and humid conditions. Polym Chem 2019. [DOI: 10.1039/c9py00465c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrogen-rich microporous polymers are prepared via a catalyst-free polymerization reaction using formamide derivatives as monomers, which exhibit outstandingly high CO2/N2 selectivity up to 151 and 173 at 273 K under dry and humid conditions, respectively.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Jun Yan
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Gen Li
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Zhonggang Wang
- Department of Polymer Science and Materials
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
32
|
Abstract
Porous organic polymers (POPs), which are built from pure organic building blocks through strong covalent bonds, are intriguing platforms with multiple functionalities.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116012
- China
| | - Juntao Tang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| | - Linfeng Luo
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| |
Collapse
|
33
|
Lei H, Hu Y, Li G. Magnetic poly(phenylene ethynylene) conjugated microporous polymer microspheres for bactericides enrichment and analysis by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2018; 1580:22-29. [DOI: 10.1016/j.chroma.2018.10.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
|
34
|
Baig N, Shetty S, Al-Mousawi S, Al-Sagheer F, Alameddine B. Influence of size and nature of the aryl diborate spacer on the intrinsic microporosity of Iron(II) clathrochelate polymers. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Satheeshkumar C, Seo M. Creation of micropores by RAFT copolymerization of conjugated multi-vinyl cross-linkers. Polym Chem 2018. [DOI: 10.1039/c8py01198b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Copolymerization of conjugated multi-vinyl cross-linkers with styrene creates a fluorescent and microporous cross-linked network, useful for the synthesis of hierarchically porous polymers.
Collapse
Affiliation(s)
- Chinnadurai Satheeshkumar
- Graduate School of Nanoscience and Technology
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Myungeun Seo
- Graduate School of Nanoscience and Technology
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Department of Chemistry
| |
Collapse
|