1
|
Zou J, Liao J, He Y, Zhang T, Xiao Y, Wang H, Shen M, Yu T, Huang W. Recent Development of Photochromic Polymer Systems: Mechanism, Materials, and Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0392. [PMID: 38894714 PMCID: PMC11184227 DOI: 10.34133/research.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Photochromic polymer is defined as a series of materials based on photochromic units in polymer chains, which produces reversible color changes under irradiation with a particular wavelength. Currently, as the research progresses, it shows increasing potential applications in various fields, such as anti-counterfeiting, information storage, super-resolution imaging, and logic gates. However, there is a paucity of published reviews on the topic of photochromic polymers. Herein, this review discusses and summarizes the research progress and prospects of such materials, mainly summarizing the basic mechanisms, classification, and applications of azobenzene, spiropyran, and diarylethene photochromic polymers. Moreover, 3-dimensional (3D) printable photochromic polymers are worthy to be summarized specifically because of its innovative approach for practical application; meanwhile, the developing 3D printing technology has shown increasing potential opportunities for better applications. Finally, the current challenges and future directions of photochromic polymer materials are summarized.
Collapse
Affiliation(s)
- Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Jimeng Liao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyao Shen
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province,
Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Ghate PP, Hanson KM, Lam K, Al-Kaysi RO, Bardeen CJ. Generating Stable Nitrogen Bubble Layers on Poly(methyl methacrylate) Films by Photolysis of 2-Azidoanthracene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4054-4062. [PMID: 38353460 DOI: 10.1021/acs.langmuir.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
2-Azidoanthracene (2N3-AN) can act as a photochemical source of N2 gas when dissolved in an optically transparent polymer such as poly(methyl methacrylate) (PMMA). Irradiation at 365 or 405 nm of a 150 μm-thick polymer film submerged in water causes the rapid appearance of a surface layer of bubbles. The rapid appearance of surface bubbles cannot be explained by normal diffusion of N2 through the polymer and likely results from internal gas pressure buildup during the reaction. For an azide concentration of 0.1 M and a light intensity of 140 mW/cm2, the yield of gas bubbles is calculated to be approximately 40%. The dynamics of bubble growth depend on the surface morphology, light intensity, and 2N3-AN concentration. A combination of nanoscale surface roughness, high azide concentration, and high light intensity is required to attain the threshold N2 gas density necessary for rapid, high-yield bubble formation. The N2 bubbles adhered to the PMMA surface and survived for days under water. The ability to generate stable gas bubbles "on demand" using light permits the demonstration of photoinduced flotation and patterned bubble arrays.
Collapse
Affiliation(s)
- Pranaya P Ghate
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Kerry M Hanson
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Kevin Lam
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Rabih O Al-Kaysi
- College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center (Nanomedicine), Ministry of National Guard Health Affairs, Riyadh 11426, Kingdom of Saudi Arabia
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
3
|
Wu S, Wang W, Cai C, Li F, Dong S. Low-molecular-weight supramolecular adhesive with resistance to low temperatures. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Zhang L, Deng Y, Xie C, Wu Z. Disordered Low Molecular Weight Spiropyran Exhibiting Photoregulated Adhesion Ability. Chemistry 2022; 28:e202200245. [PMID: 35146806 DOI: 10.1002/chem.202200245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/12/2022]
Abstract
The functions of the materials composed of small molecules are highly dependent on their ordered molecular arrangements in both natural and artificial systems. Without ordered structure, small molecules hardly gain complicated functions, due to the absence of intermolecular covalent bond connection or strong network. Here, a low molecular weight spiropyran that could exhibit attractive photochromism and powerful adhesion property in disordered solid state is demonstrated. With maximum up to ∼8 MPa, the adhesion strength could be photoregulated in multiple levels, which also shows one-to-one correspondence to the specific color state. The working mechanism analysis on the photoregulated adhesion reveals that the isomer ratio of merocyanine form and the molecular packing density of spiropyran are the determining factors for the adhesion ability. The discovery of photoregulated adhesion from pure spiropyran provides a new strategy for developing functional materials by employing low molecular weight compounds.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yawen Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congxia Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
6
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
7
|
Eickelmann S, Moon S, Liu Y, Bitterer B, Ronneberger S, Bierbaum D, Breitling F, Loeffler FF. Assessing Polymer-Surface Adhesion with a Polymer Collection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2220-2226. [PMID: 35138112 PMCID: PMC8867722 DOI: 10.1021/acs.langmuir.1c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Polymer modification plays an important role in the construction of devices, but the lack of fundamental understanding on polymer-surface adhesion limits the development of miniaturized devices. In this work, a thermoplastic polymer collection was established using the combinatorial laser-induced forward transfer technique as a research platform, to assess the adhesion of polymers to substrates of different wettability. Furthermore, it also revealed the influence of adhesion on dewetting phenomena during the laser transfer and relaxation process, resulting in polymer spots of various morphologies. This gives a general insight into polymer-surface adhesion and connects it with the generation of defined polymer microstructures, which can be a valuable reference for the rational use of polymers.
Collapse
Affiliation(s)
- Stephan Eickelmann
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sanghwa Moon
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Yuxin Liu
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Benjamin Bitterer
- Institute
of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sebastian Ronneberger
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Dominik Bierbaum
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Frank Breitling
- Institute
of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F. Loeffler
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Blelloch ND, Yarbrough HJ, Mirica KA. Stimuli-responsive temporary adhesives: enabling debonding on demand through strategic molecular design. Chem Sci 2021; 12:15183-15205. [PMID: 34976340 PMCID: PMC8635214 DOI: 10.1039/d1sc03426j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Stimuli-responsive temporary adhesives constitute a rapidly developing class of materials defined by the modulation of adhesion upon exposure to an external stimulus or stimuli. Engineering these materials to shift between two characteristic properties, strong adhesion and facile debonding, can be achieved through design strategies that target molecular functionalities. This perspective reviews the recent design and development of these materials, with a focus on the different stimuli that may initiate debonding. These stimuli include UV light, thermal energy, chemical triggers, and other potential triggers, such as mechanical force, sublimation, electromagnetism. The conclusion discusses the fundamental value of systematic investigations of the structure-property relationships within these materials and opportunities for unlocking novel functionalities in future versions of adhesives.
Collapse
Affiliation(s)
- Nicholas D Blelloch
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| | - Hana J Yarbrough
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| | - Katherine A Mirica
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| |
Collapse
|
9
|
Gately TJ, Li W, Mostafavi SH, Bardeen CJ. Reversible Adhesion Switching Using Spiropyran Photoisomerization in a High Glass Transition Temperature Polymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas J. Gately
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Wangxiang Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Seyed Hossein Mostafavi
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Christopher J. Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Duan Y, Zhao H, Xiong C, Mao L, Wang D, Zheng Y. Learning from Spiropyrans: How to Make Further Developments of
Donor‐Acceptor
Stenhouse Adducts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Haiquan Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Chaoyue Xiong
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Lijun Mao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| |
Collapse
|
11
|
Zhang R, Han L, Ma H, Lei L, Li C, Zhang S, Bai H, Li Y. Well-controlled spiropyran functionalized polystyrenes via a combination of anionic polymerization and hydrosilylation for photoinduced solvatochromism. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
F Reis I, Miguez FB, Vargas CAA, Menzonatto TG, Silva IMS, Verano-Braga T, Lopes JF, Brandão TAS, De Sousa FB. Structural and Electronic Characterization of a Photoresponsive Lanthanum(III) Complex Incorporated into Electrospun Fibers for Phosphate Ester Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28607-28615. [PMID: 32463219 DOI: 10.1021/acsami.0c03571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we present the light-induced synthesis and characterization of a La3+/spiropyran derivative complex (LaMC) and its application as a catalyst when incorporated into electrospun polycaprolactone (PCL) fibers. In addition to experimental methods, computational calculations were also essential to better understand the structure and electronic characteristics of LaMC. The LaMC complex was identified as a 10-coordinated structure with the La3+ ion coordinated by four oxygens from the phenolate and the carbonyl of the carboxyl acid group from both MC ligands and by six oxygens from three nitrate ligands. In addition, LaMC was capable of getting reversibly isomerized by UV or visible light cycling. All PCL fibers were successively obtained, and their morphologies, surface properties, and catalytic behavior were studied. Results showed that PCL/LaMC fibers were capable of catalyzing bis(2,4-dinitrophenyl)phosphate degradation efficiently. Complete hydrolysis was accomplished in only 1.5 days relative to the half-life time of 35 days for the uncatalyzed hydrolysis at pH 8.1 and 25 °C.
Collapse
Affiliation(s)
- Izadora F Reis
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Flávio B Miguez
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Carlos A Amaya Vargas
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Thiago G Menzonatto
- Laboratório de Química Computacional (LaQC)-Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Igor M S Silva
- Departamento de Fisiologia e Biofísica-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Juliana Fedoce Lopes
- Laboratório de Química Computacional (LaQC)-Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Tiago A S Brandão
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| |
Collapse
|
13
|
Abstract
AbstractThis article introduces the general characteristics of the diarylethene class of photochromic dye and the structural features that make photochromism possible. It touches on the methodologies employed to synthesize these compounds as well as the influences that typical substitution patterns exert on photocoloration. A demonstration is then given of the great diversity pertaining to the potential applications in which researchers are seeking to exploit them as functional colorants.
Collapse
Affiliation(s)
- Andrew Towns
- Technical, Lambson Ltd, Clifford House, York Road, Wetherby, West Yorkshire, LS22 7NSUnited Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
14
|
Mostafavi SH, Li W, Clark KD, Stricker F, Alaniz JRD, Bardeen CJ. Photoinduced Deadhesion of a Polymer Film Using a Photochromic Donor–Acceptor Stenhouse Adduct. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Kyle D. Clark
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | | |
Collapse
|
15
|
Abstract
A dimethylaminopyridine-embedded spiropyran compound switches its coordination capability under light.
Collapse
Affiliation(s)
- Tao Zhou
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Zhihao Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Jiaobing Wang
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
16
|
Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Rewritable Anticounterfeiting Polymer Inks Based on Functionalized Stimuli-Responsive Latex Particles Containing Spiropyran Photoswitches: Reversible Photopatterning and Security Marking. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39279-39292. [PMID: 30379526 DOI: 10.1021/acsami.8b14865] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Increase of safety in security documents by using anticounterfeiting inks based on fluorochromic and photochromic compounds has attracted a great deal of attention in the recent years. Herein, we developed novel functionalized stimuli-responsive latex particles containing spiropyran (1 wt %) by semicontinuous emulsifier-free emulsion polymerization, which are usable as anticounterfeiting inks for marking on security documents and also photopatterning on cellulosic papers. The size and morphology of the latex particles were characterized by scanning electron microscopy and dynamic light scattering and their functionality was characterized by Fourier-transform infrared spectroscopy. All the stimuli-responsive latexes are composed of spherical particles with different hydroxyl, epoxy, and carboxylic acid functional groups, and the size of the particles varies in the range of 400-900 nm. Additionally, the latex particles undergo a remarkable light-induced size variation (aggregation-disaggregation) upon UV illumination (365 nm), depending on the functional group type, as a result of π-π stacking interactions and also electrostatic attractions between the different particles. The photochromic behavior, kinetics of the SP ⇌ MC isomerization, photoswitchability, and photofatigue-resistant characteristics of the prepared latexes were extensively investigated. The results display that the photochromic behavior and SP ⇌ MC isomerization can significantly be influenced by the polar interactions between the functional groups and MC molecules. As a novel application, the prepared stimuli-responsive latexes were used as anticounterfeiting inks for writing on cellulosic paper and also security marking on several monies, where the written phrase displayed red fluorescence emission and coloration under and after UV illumination (365 nm), respectively. Additionally, the latexes were sprayed on cellulosic papers to prepare stimuli-responsive papers for investigation of their photopatterning ability under UV irradiation and different masking. The presence of functional groups and large particle sizes are the main effective factors for stabilization of the latex particles on cellulosic papers. This is the first report on application of functionalized stimuli-responsive latex particles containing spiropyran as anticounterfeiting inks for security marking and photopatterning on cellulosic papers, directly and without using further additives.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| | - Keyvan Sahandi-Zangabad
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| |
Collapse
|