1
|
Rimmele M, Glöcklhofer F, Heeney M. Post-polymerisation approaches for the rapid modification of conjugated polymer properties. MATERIALS HORIZONS 2022; 9:2678-2697. [PMID: 35983884 PMCID: PMC9620492 DOI: 10.1039/d2mh00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Post-polymerisation functionalisation provides a facile and efficient way for the introduction of functional groups on the backbone of conjugated polymers. Using post-polymerisation functionalisation approaches, the polymer chain length is usually not affected, meaning that the resulting polymers only differ in their attached functional groups or side chains, which makes them particularly interesting for investigating the influence of the different groups on the polymer properties. For such functionalisations, highly efficient and selective reactions are needed to avoid the formation of complex mixtures or permanent defects in the polymer backbone. A variety of suitable synthetic approaches and reactions that fulfil these criteria have been identified and reported. In this review, a thorough overview is given of the post-polymerisation functionalisations reported to date, with the methods grouped based on the type of reaction used: cycloaddition, oxidation/reduction, nucleophilic aromatic substitution, or halogenation and subsequent cross-coupling reaction. Instead of modifications on the aliphatic side chains of the conjugated polymers, we focus on modifications directly on the conjugated backbones, as these have the most pronounced effect on the optical and electronic properties. Some of the discussed materials have been used in applications, ranging from solar cells to bioelectronics. By providing an overview of this versatile and expanding field for the first time, we showcase post-polymerisation functionalisation as an exciting pathway for the creation of new conjugated materials for a range of applications.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Li K, Fong D, Meichsner E, Adronov A. A Survey of Strain-Promoted Azide-Alkyne Cycloaddition in Polymer Chemistry. Chemistry 2021; 27:5057-5073. [PMID: 33017499 DOI: 10.1002/chem.202003386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide-alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.
Collapse
Affiliation(s)
- Kelvin Li
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Darryl Fong
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
3
|
Luo Y, Maimaiti Y, Maimaitiyiming X, Xie C, Pei T. Sorting and decoration of semiconducting single-walled carbon nanotubes via the quaternization reaction. RSC Adv 2021; 11:2898-2904. [PMID: 35424260 PMCID: PMC8693859 DOI: 10.1039/d0ra08591j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
A study for the selective separation and functionalization of alcohol-soluble semiconducting single-walled carbon nanotubes (sc-SWCNTs) is carried out by polymer main-chain engineering. Introducing tertiary amine groups endows the functionalized sc-SWCNTs with alcohol-soluble properties and introducing the pyrimidine rings allows to increase the selective purity of sc-SWCNTs. In this study, a series of poly[(9,9-dioctylfluorene)-2,7-(9,9-bis(3'-(N,N-dimethylamino)propyl)-fluorene)] m -alt-[2-methylpyrimidine-2,7-(9,9-dioctylfluorene)] n (PFPy) are used for the selective dispersion of semiconducting single-walled carbon nanotubes, where n and m are the composition ratio of the copolymer. When m = n, the effective isolation of sc-SWCNTs with purity greater than 99% is achieved. The alcohol-soluble sc-SWCNTs with a diameter in the range of 1.1-1.4 nm are obtained through designing reasonable molecular structure. Moreover, the particular preference of PFPy (m = n) for sc-SWCNTs was studied via density functional theory (DFT) calculations and it was proved to be a promising method for the separation and functionalization of sc-SWCNTs.
Collapse
Affiliation(s)
- Ying Luo
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Yuemaierjiang Maimaiti
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Xieraili Maimaitiyiming
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Chuang Xie
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 PR China
| | - Tiezhu Pei
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 PR China
| |
Collapse
|
4
|
Luo SXL, Lin CJ, Ku KH, Yoshinaga K, Swager TM. Pentiptycene Polymer/Single-Walled Carbon Nanotube Complexes: Applications in Benzene, Toluene, and o-Xylene Detection. ACS NANO 2020; 14:7297-7307. [PMID: 32510203 PMCID: PMC7370303 DOI: 10.1021/acsnano.0c02570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report the dispersion of single-walled carbon nanotubes (SWCNTs) using pentiptycene polymers and their use in chemiresistance-based and QCM-D sensors. Poly(p-phenylene ethynylene)s (PPEs) incorporating pentiptycene moieties present a concave surface that promotes π-π interactions and van der Waals interactions with SWCNTs. In contrast to more common polymer-dispersing mechanisms that involve the wrapping of polymers around the SWCNTs, we conclude that the H-shape of pentiptycene groups and the linear rigid-rod structure creates a slot for nanotube binding. UV-vis-NIR, Raman, and fluorescence spectra and TEM images of polymer/SWCNTs support this dispersion model, which shows size selectivity to SWCNTs with diameters of 0.8-0.9 nm. Steric bulk on the channels is problematic, and tert-butylated pentiptycenes do not form stable dispersions with SWCNTs. This result, along with the diameter preference, supports the model in which the SWCNTs are bound to the concave clefts of the pentiptycenes. The binding model suggests that the polymer/SWCNTs complex creates galleries, and we have demonstrated the binding of benzene, toluene, and o-xylene (BTX) vapors as the basis for a robust, sensitive, and selective sensing platform for BTX detection. The utility of our sensors is demonstrated by the detection of benzene at the OSHA short-term exposure limit of 5 ppm in air.
Collapse
Affiliation(s)
- Shao-Xiong Lennon Luo
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Che-Jen Lin
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kang Hee Ku
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kosuke Yoshinaga
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Fong D, Lang A, Li K, Adronov A. Visible Light-Mediated Photoclick Functionalization of a Conjugated Polymer Backbone. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Darryl Fong
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Alice Lang
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Kelvin Li
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
6
|
McNelles SA, Pantaleo JL, Adronov A. Highly Efficient Multigram Synthesis of Dibenzoazacyclooctyne (DBCO) without Chromatography. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1 Canada
| | - Julia L. Pantaleo
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1 Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1 Canada
| |
Collapse
|
7
|
Lirette F, Aumaitre C, Fecteau CÉ, Johnson PA, Morin JF. Synthesis and Properties of Conjugated Polymers Based on a Ladderized Anthanthrene Unit. ACS OMEGA 2019; 4:14742-14749. [PMID: 31552312 PMCID: PMC6756517 DOI: 10.1021/acsomega.9b01185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are interesting building blocks for the preparation of conjugated polymers due to their extended π surface and planar conformation. However, their use as comonomer in conjugated polymers often leads to nonplanar main chains as a consequence of high steric hindrance at the linking point. Herein, we report the synthesis of a ladderized anthanthrene unit using an sp3 carbon bridge. Three conjugated copolymers with fluorene, isoindigo, and bithiophene derivatives have been synthesized and characterized to study the effect of such ladderization on the electronic properties. The dihedral angle between the ladderized anthanthrene and adjacent units has been significantly reduced by the formation of the sp3 carbon bridge, thus eliminating the steric hindrance with the proton at the peri position of the anthanthrene unit and red-shifting the absorption spectrum by 25 nm.
Collapse
Affiliation(s)
- Frédéric Lirette
- Département de Chimie
and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Pavillon A.-Vachon. 1045 Ave de la Médecine, Québec G1V 0A6, Canada
| | - Cyril Aumaitre
- Département de Chimie
and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Pavillon A.-Vachon. 1045 Ave de la Médecine, Québec G1V 0A6, Canada
| | - Charles-Émile Fecteau
- Département de Chimie
and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Pavillon A.-Vachon. 1045 Ave de la Médecine, Québec G1V 0A6, Canada
| | - Paul A. Johnson
- Département de Chimie
and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Pavillon A.-Vachon. 1045 Ave de la Médecine, Québec G1V 0A6, Canada
| | - Jean-François Morin
- Département de Chimie
and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Pavillon A.-Vachon. 1045 Ave de la Médecine, Québec G1V 0A6, Canada
| |
Collapse
|
8
|
McNelles SA, Pantaleo JL, Meichsner E, Adronov A. Strain-Promoted Azide-Alkyne Cycloaddition-Mediated Step-Growth Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Julia L. Pantaleo
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
9
|
Xin D, Qin A, Tang BZ. Benzyne–azide polycycloaddition: a facile route toward functional polybenzotriazoles. Polym Chem 2019. [DOI: 10.1039/c9py00632j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient benzyne–azide polycycloaddition is established and functional poly(benzotriazole)s are produced under mild reaction conditions.
Collapse
Affiliation(s)
- Dehua Xin
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
10
|
Shamshoom C, Fong D, Li K, Kardelis V, Adronov A. Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS OMEGA 2018; 3:13935-13943. [PMID: 31458090 PMCID: PMC6645158 DOI: 10.1021/acsomega.8b02091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
Control of single-walled carbon nanotube dispersion properties is of substantial interest to the scientific community. In this work, we sought to investigate the effect of a macrocycle, pillar[5]arene, on the dispersion properties of a polymer-nanotube complex. Pillar[5]arenes are a class of electron-rich macrocyclic hosts capable of forming inclusion complexes with electron-poor guests, such as alkyl nitriles. A hydroxyl-functionalized pillar[5]arene derivative was coupled to the alkyl bromide side chains of a polyfluorene, which was then used to coat the surface of single-walled carbon nanotubes. Noncovalent functionalization of carbon nanotubes with the macrocycle-containing conjugated polymer significantly enhanced nanotube solubility, resulting in dark and concentrated nanotube dispersions (600 μg mL-1), as evidenced by UV-vis-NIR spectroscopy and thermogravimetric analysis. Differentiation of semiconducting and metallic single-walled carbon nanotube species was analyzed by a combination of UV-vis-NIR, Raman, and fluorescence spectroscopy. Raman spectroscopy confirmed that the concentrated nanotube dispersion produced by the macrocycle-containing polymer was due to well-exfoliated nanotubes, rather than bundle formation. The polymer-nanotube dispersion was investigated using 1H NMR spectroscopy, and it was found that host-guest chemistry between pillar[5]arene and 1,6-dicyanohexane occurred in the presence of the polymer-nanotube complex. Utilizing the host-guest capability of pillar[5]arene, the polymer-nanotube complex was incorporated into a supramolecular organogel.
Collapse
Affiliation(s)
- Christina Shamshoom
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Darryl Fong
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Kelvin Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Vladimir Kardelis
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S
4L8, Canada
| |
Collapse
|
11
|
Yoon B, Choi SJ, Swager TM, Walsh GF. Switchable Single-Walled Carbon Nanotube-Polymer Composites for CO 2 Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33373-33379. [PMID: 30229659 DOI: 10.1021/acsami.8b11689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report a chemiresistive CO2 sensor based on single-walled carbon nanotubes (SWCNTs) noncovalently functionalized with a CO2 switchable copolymer containing amidine pendant groups that transform into amidinium bicarbonates in response to CO2. To fabricate a robust surface-anchored polymer-SWCNT dispersion via spray coating, we first designed and synthesized a precursor copolymer, P(4VP-VBAz), bearing both 4-vinylpyridine (4VP) groups and azide groups. The SWCNT dispersant group, 4VP, is capable of debundling and stabilizing nanotubes to improve their solubility in organic solvents for solution processing. Well-dispersed P(4VP-VBAz)-SWCNT composites are covalently immobilized onto a glass substrate functionalized with alkyl bromides, and then the amidine moieties are subsequently attached to form the resulting CO2-switchable P(Q4VP-VBAm)-SWCNT composites via a copper(I)-catalyzed azide-alkyne cycloaddition click reaction at the film surface. The amidine groups are strong donors that compensate or pin carriers in the SWCNTs. In the presence of CO2 under humid conditions, the generated amidinium bicarbonates from the polymer wrapping increase the concentration and/or liberate the hole carriers in the nanotubes, thereby increasing the net conductance of the composites. The amidinium moieties revert back to the amidines when purged with a CO2-free carrier gas with a reversible decrease in conductance. We also demonstrate high selectivity to CO2 over the other atmospheric gases such as O2 and Ar.
Collapse
Affiliation(s)
- Bora Yoon
- Optical and Electromagnetic Materials Team, U.S. Army Natick Soldier Research , Development and Engineering Center (NSRDEC) , Natick , Massachusetts 01760 , United States
| | | | | | - Gary F Walsh
- Optical and Electromagnetic Materials Team, U.S. Army Natick Soldier Research , Development and Engineering Center (NSRDEC) , Natick , Massachusetts 01760 , United States
| |
Collapse
|
12
|
Fong D, Andrews GM, Adronov A. Functionalization of polyfluorene-wrapped carbon nanotubes via copper-mediated azide–alkyne cycloaddition. Polym Chem 2018. [DOI: 10.1039/c8py00377g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper-mediated azide–alkyne cycloaddition enables quantitative functionalization of polymer-nanotube complexes containing azide moieties in the polymer side chains.
Collapse
Affiliation(s)
- Darryl Fong
- Department of Chemistry
- McMaster University
- Hamilton
- Canada
| | | | - Alex Adronov
- Department of Chemistry
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
13
|
Fong D, Andrews GM, McNelles SA, Adronov A. Decoration of polyfluorene-wrapped carbon nanotube thin films via strain-promoted azide–alkyne cycloaddition. Polym Chem 2018. [DOI: 10.1039/c8py01003j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Latently reactive polymer–SWNT complexes were prepared by coating SWNTs with polyfluorene containing azide moieties in the side chain, allowing spatially resolved decoration of nanotube thin films with various functionalities.
Collapse
Affiliation(s)
- Darryl Fong
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Grace M. Andrews
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Stuart A. McNelles
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada
| |
Collapse
|