1
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
2
|
Grisolia A, Dell’Olio G, Spadafora A, De Santo M, Morelli C, Leggio A, Pasqua L. Hybrid Polymer-Silica Nanostructured Materials for Environmental Remediation. Molecules 2023; 28:5105. [PMID: 37446768 PMCID: PMC10343502 DOI: 10.3390/molecules28135105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Due to the ever-growing global population, it is necessary to develop highly effective processes that minimize the impact of human activities and consumption on the environment. The levels of organic and inorganic contaminants have rapidly increased in recent years, posing a threat to ecosystems. Removing these toxic pollutants from the environment is a challenging task that requires physical, chemical, and biological methods. An effective solution involves the use of novel engineered materials, such as silica-based nanostructured materials, which exhibit a high removal capacity for various pollutants. The starting materials are also thermally and mechanically stable, allowing for easy design and development at the nanoscale through versatile functionalization procedures, enabling their effective use in pollutant capture. However, improvements concerning mechanical properties or applicability for repeated cycles may be required to refine their structural features. This review focuses on hybrid/composite polymer-silica nanostructured materials. The state of the art in nanomaterial synthesis, different techniques of functionalization, and polymer grafting are described. Furthermore, it explores the application of polymer-modified nanostructured materials for the capture of heavy metals, dyes, hydrocarbons and petroleum derivatives, drugs, and other organic compounds. The paper concludes by offering recommendations for future research aimed at advancing the application of polymer-silica nanostructured materials in the efficiency of pollutant uptake.
Collapse
Affiliation(s)
- Antonio Grisolia
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Gianluca Dell’Olio
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Angelica Spadafora
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| |
Collapse
|
3
|
Li CX, Mao JY, Li SJ, Wang Y, Liu H. A long chain-induced depletion effect for abnormal grafting in the preparation of bimodal bidisperse polymer-grafted nanoparticles. Phys Chem Chem Phys 2023; 25:5627-5637. [PMID: 36727641 DOI: 10.1039/d2cp04229k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the challenging problems in the research field of polymer nanocomposites is how to prepare nanocomposites with high grafting density and strong ability of dispersion at the same time. For nanocomposites composed of bimodal bidisperse polymer chains and nanoparticles, the above requirements can be met by rationally adjusting the ratio of long and short polymer chains. In this study, the process of grafting bimodal bidisperse polymer chains onto the surface of nanoparticles in a grafting-to manner was investigated via computer simulation and theoretical methods. Three grafting strategies were designed: first short then long (SL) system, both short and long (Both) system and first long then short (LS) system. An abnormal phenomenon for the Both system was found by analyzing the grafting density of long and short polymer chains on the surface of nanoparticles. We speculate that the reason for this anomalous phenomenon is the "depletion effect" brought about by the long chains in the Both system. We employ the Polymer Reference Interaction Site Model (PRISM) theory to investigate this anomaly in-depth. By comparing the radial distribution function (RDF) predicted by the PRISM theory with the RDF results obtained by the molecular dynamics (MD) simulation, we found that with the increase of the number of long chains in the system, the grafting density of short polymer chains on the nanoparticle surface showed an obvious upward trend. The "depletion effect" brought by long chains was the main reason for higher short chains' grafting density of the Both system compared to the SL system. Our findings provide effective guidance for the design of nanoparticle-grafted bimodal bidisperse polymer chains and provide a theoretical basis for experimentation and production of polymer nanocomposites with better performance.
Collapse
Affiliation(s)
- Chu-Xiang Li
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jin-Yuan Mao
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shu-Jia Li
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Yan Wang
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
4
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
5
|
Liang CX, Lu H, Huang BY, Xing JY, Gu FL, Liu H. Physical Insight for Grafting Polymer Chains onto the Substrate via Computer Simulations: Kinetics and Property. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
7
|
Lin X, Lin X. Surface ligand rigidity modulates lipid raft affinity of ultra-small hydrophobic nanoparticles: insights from molecular dynamics simulations. NANOSCALE 2021; 13:9825-9833. [PMID: 34032262 DOI: 10.1039/d1nr01563j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Differential preferences between lipids and proteins drive the formation of dynamical nanoscale membrane domains (lipid rafts), which play key roles in the proper functioning of cells. On the other hand, due to the potent physicochemical properties of nanoparticles (NPs), they have been widely used in drug delivery, bio-imaging and regulating various essential biological processes of the cells. Hence, in this work, we aim to design ultra-small hydrophobic NPs with tunable raft affinity, which is supposed to partition into the hydrophobic region of lipid membranes and be able to regulate the dynamics of the lipid raft domains. A series of μs-scale coarse-grained molecular dynamics simulations and umbrella sampling free energy calculations were performed to investigate the role of surface ligand rigidity of ultra-small hydrophobicNPs in their raft affinity. Our results indicated that the preferred localization of NPs can be tuned by adjusting their surface ligand rigidity. Generally, rigid NPs tended to target the raft domain, while soft NPs preferred the interface of the raft and non-raft domains. The free energy analysis further indicated that the surface ligand rigidity of NPs can enhance their targeting to lipid raft domains. Besides, we found that these ultra-small NPs had no significant effects on the phase separation of the lipid membrane although they might cause some local interference to surrounding lipids. These results indicate that the targeting to the lipid raft domain can be achieved by the surface ligand rigidity of NPs, which provides helpful insights for further regulations of lipid raft-mediated biological processes.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | | |
Collapse
|
8
|
|
9
|
Chen L, Xiong Z, Xiong H, Din ZU. Investigating the structure and self-assembly behavior of starch-g-VAc in starch-based adhesive by combining NMR analysis and multi-scale simulation. Carbohydr Polym 2020; 246:116655. [PMID: 32747287 DOI: 10.1016/j.carbpol.2020.116655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
This work investigated the structure and self-assembly behavior of grafted starch (GS) prepared by grafting vinyl acetate (VAc) on the starch molecule. Our preliminary structure characterization, NMR, and quantum mechanical simulation demonstrated the C2 of the glucose unit as the main grafting site. The grafting frequency and chain length (starch, VAc) were calculated based on the result of gel permeation chromatography. Molecular dynamics simulation showed that, when compared with native starch, GS had less hydrogen bonding interaction, lower orderness, and higher extensibility, which were supported by the experimental results. In dissipative particle dynamics simulation, GS was shown to self-assemble into a core-shell structure (latex) and form a bridge structure with cross-linking interaction. The overall results indicate that chain entanglement and hydrogen bonding interaction of starch play a significant role in adhesive curing. This research provides a novel insight into the grafting and molecular interaction mechanism in the GS adhesive system.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhouyi Xiong
- Fisheries research institute, Wuhan academy of agricultural sciences, Wuhan, 430207, China.
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zia-Ud Din
- Department of Agriculture, University of Swabi, Anbar, 23561 Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Dey P, Thurecht KJ, Fredericks PM, Blakey I. Stepwise Like Supramolecular Polymerization of Plasmonic Nanoparticle Building Blocks through Complementary Interactions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Priyanka Dey
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Kristofer J. Thurecht
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter M. Fredericks
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Idriss Blakey
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Yan K, Kong H, Cui Z, Fu P, Liu M, Qiao X, Pang X. A Versatile Strategy for Unimolecular Micelle-Derived Hollow Polymer Nanoparticles as General Nanoreactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6690-6697. [PMID: 32493013 DOI: 10.1021/acs.langmuir.0c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We reported the synthesis of a well-defined hollow polymer nanoparticle derived from star-shaped unimolecular micelles. β-Cyclodextrin was first applied as an efficient macroinitiator to prepare a star-shaped PCL via ring-opening polymerization (ROP). Then, the star-shaped PCL was modified to be a macro-RAFT agent for photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of S-Cl monomers. The prepared unimolecular micelles can be photocross-linked under UV irradiation after a simple nucleophilic substitution reaction, which made -Cl groups to be -N3 groups. After the selective removal of the PCL core, hollow polymer nanoparticles were achieved and exhibited to be a general nanoreactor strategy for the fabrication of nanocrystals with well-controlled architectures. Compared with unimolecular micelle templates, the nanocrystals prepared by hollow templates are absolutely pure as no polymer chains are embedded in the inorganic nanocrystals. In addition, by changing the concentration of the precursor, the structure of the nanocrystal can be changed from a normal spherical structure to a hollow structure.
Collapse
Affiliation(s)
- Kailong Yan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Huimin Kong
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Lin X, Lin X, Gu N. Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. NANOSCALE 2020; 12:4101-4109. [PMID: 32022059 DOI: 10.1039/c9nr09226a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to different interactions between lipids and proteins, a plasma membrane can segregate into different membrane domains. Among them, ordered functional membrane domains are defined as "lipid rafts", which play key roles in many biological processes (e.g., signal transduction, endocytosis, etc.) in the cell. Hence, it will be of much biological significance to monitor and even regulate the dynamics of lipid rafts. In this work, we designed a ligand-modified spherical nanoparticle with coarse-grained molecular dynamics simulations, which can be encapsulated into the hydrophobic region of the lipid membrane and specifically target either raft or non-raft membrane domains. The preferred localization of the nanoparticle can be tuned by adjusting ligand hydrophobicity, length and density. Generally, more hydrophobic nanoparticles tend to target the raft domain, while less hydrophobic nanoparticles prefer the non-raft domain. Besides, ligand length and density jointly determine the exposure of nanoparticle cores and thus affect the roles of ligands in nanoparticles' final localization. Our results may provide insights into the experimental design of functional nanoparticles, targeting the lipid raft and regulating its dynamics.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
13
|
Nanoparticle Dispersion and Glass Transition Behavior of Polyimide-grafted Silica Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2300-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Bachhar N, Kumaraswamy G, Kumar SK. Core-Size Dispersity Dominates the Self-Assembly of Polymer-Grafted Nanoparticles in Solution. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nirmalya Bachhar
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Guruswamy Kumaraswamy
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10025, United States
| |
Collapse
|
15
|
Wang S, Zhang X, Jiang C, Jiang H, Tang Y, Li J, Ren M, Qiao J. Polymer Solid-Phase Grafting at Temperature Higher than the Polymer Melting Point through Selective Heating. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Songhe Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Xiaohong Zhang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Chao Jiang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Haibin Jiang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yujing Tang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Juan Li
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Minqiao Ren
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Jinliang Qiao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| |
Collapse
|
16
|
Rabanel JM, Adibnia V, Tehrani SF, Sanche S, Hildgen P, Banquy X, Ramassamy C. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? NANOSCALE 2019; 11:383-406. [PMID: 30560970 DOI: 10.1039/c8nr04916e] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drug nanocarriers' surface chemistry is often presumed to be uniform. For instance, the polymer surface coverage and distribution of ligands on nanoparticles are described with averaged values obtained from quantification techniques based on particle populations. However, these averaged values may conceal heterogeneities at different levels, either because of the presence of particle sub-populations or because of surface inhomogeneities, such as patchy surfaces on individual particles. The characterization and quantification of chemical surface heterogeneities are tedious tasks, which are rather limited by the currently available instruments and research protocols. However, heterogeneities may contribute to some non-linear effects observed during the nanoformulation optimization process, cause problems related to nanocarrier production scale-up and correlate with unexpected biological outcomes. On the other hand, heterogeneities, while usually unintended and detrimental to nanocarrier performance, may, in some cases, be sought as adjustable properties that provide NPs with unique functionality. In this review, results and processes related to this issue are compiled, and perspectives and possible analytical developments are discussed.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Vahid Adibnia
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Soudeh F Tehrani
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Steven Sanche
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Patrice Hildgen
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Charles Ramassamy
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
17
|
Li L, Han C, Xu D, Xing JY, Xue YH, Liu H. Polymer-grafted nanoparticles prepared via a grafting-from strategy: a computer simulation study. Phys Chem Chem Phys 2018; 20:18400-18409. [PMID: 29946599 DOI: 10.1039/c8cp02905a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles (NPs) grafted with polymer chains prepared via a grafting-from strategy are studied through coarse-grained molecular dynamics simulations combined with our stochastic reaction model. A system involving multiple individual NPs, with grafting-from processes for all the NPs induced simultaneously, is simulated, so that chain growth competition on the same NP, as well as between neighbouring NPs, are both naturally considered. Our results imply that there should be an optimized range of NP sizes, as compared to monomer size, in which initiator sites are most easily induced. Besides, when the initiator density is high, a shielding effect from the sparse long chains on the most short chains or initiators evidently yields an extremely unbiased distribution of chains. We also adopt a representative polymer-tethered NP prepared via a grafting-from strategy to study the potential of mean force between NPs, so that the dispersion and stabilization abilities of such polymer-grafted NPs in a polymer matrix can be generally predicted during the preparation of polymer nanocomposite materials. Our study helps to elucidate the cause of chain dispersity during the grafting-from process and could act as a guide for better design and to improve the performance of polymer nanocomposites.
Collapse
Affiliation(s)
- Long Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
| | | | | | | | | | | |
Collapse
|