1
|
Sui Y, Zhang X, Xu C, Shi Y, Deng Y, Han Y, Geng Y. Conjugated Polymers from Direct Arylation Polycondensation of 3,4-Difluorothiophene-Substituted Aryls: Synthesis and Properties. Macromol Rapid Commun 2023; 44:e2300393. [PMID: 37640284 DOI: 10.1002/marc.202300393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/19/2023] [Indexed: 08/31/2023]
Abstract
3,4-Difluorothiophene-substituted aryls, i.e., 1,4-bis(3,4-difluorothiophen-2-yl)-benzene (Ph-2FTh), 1,4-bis(3,4-difluorothiophen-2-yl)-2,5-difluorobenzene (2FPh-2FTh), and 4,7-bis(3,4-difluorothiophen-2-yl)-2,1,3-benzothiadiazole (BTz-2FTh), are synthesized as C─H monomers for the synthesis of conjugated polymers (CPs) via direct arylation polycondensation (DArP) with diketopyrrolopyrrole (DPP) and isoindigo (IID) derivatives as C─Br monomers. The Gibbs free energies of activation for direct arylation (ΔG298 K , kcal mol-1 ) for α─C─H bonds of thiophene moieties as calculated by density functional theory (DFT) are 14.3, 16.5, and 16.4 kcal mol-1 for Ph-2FTh, 2FPh-2FTh and BTz-2FTh, respectively, meaning that inserting an electron-deficient unit in 3,3',4,4'-tetrafluoro-2,2'-bithiophene (4FBT, ΔG298K : 14.6 kcal mol-1 ) may cause a reactivity decrease of the C─H monomers. Photophysical and semiconducting properties of the resulting six CPs (i.e., DPP-Ph, DPP-2FPh, DPP-BTz, 2FIID-Ph, 2FIID-2FPh, and 2FIID-BTz) are characterized in detail. DPP-based CPs show ambipolar transport properties while IID-based ones exhibited n-type behavior owing to the deeper frontier molecular orbital energy levels of IID-based CPs. With source/drain electrodes modified with polyethylenimine ethoxylated, n-channel organic thin-film transistors with maximum electron mobility of 0.40, 0.54, 0.29, 0.05, 0.16, and 0.01 cm2 V-1 s-1 for DPP-Ph, DPP-2FPh, DPP-BTz, 2FIID-Ph, 2FIID-2FPh, and 2FIID-BTz, respectively, are fabricated. DPP-2FPh exhibits the best device performance due to the good film morphology and the highest intermolecular packing order.
Collapse
Affiliation(s)
- Ying Sui
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Xuwen Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Chenhui Xu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Crystallization of D-A Conjugated Polymers: A Review of Recent Research. Polymers (Basel) 2022; 14:polym14214612. [DOI: 10.3390/polym14214612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
D-A conjugated polymers are key materials for organic solar cells and organic thin-film transistors, and their film structure is one of the most important factors in determining device performance. The formation of film structure largely depends on the crystallization process, but the crystallization of D-A conjugated polymers is not well understood. In this review, we attempted to achieve a clearer understanding of the crystallization of D-A conjugated polymers. We first summarized the features of D-A conjugated polymers, which can affect their crystallization process. Then, the crystallization process of D-A conjugated polymers was discussed, including the possible chain conformations in the solution as well as the nucleation and growth processes. After that, the crystal structure of D-A conjugated polymers, including the molecular orientation and polymorphism, was reviewed. We proposed that the nucleation process and the orientation of the nuclei on the substrate are critical for the crystal structure. Finally, we summarized the possible crystal morphologies of D-A conjugated polymers and explained their formation process in terms of nucleation and growth processes. This review provides fundamental knowledge on how to manipulate the crystallization process of D-A conjugated polymers to regulate their film structure.
Collapse
|
4
|
Chen T, Ye F, Hu R, Tang BZ. Multicomponent Polymerizations of Isocyanides, Aldehydes, and 2-Aminopyridine toward Imidazo[1,2- a]pyridine-Containing Fused Heterocyclic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Ye
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
5
|
Chen J, Yang J, Guo Y, Liu Y. Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104325. [PMID: 34605074 DOI: 10.1002/adma.202104325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
High-performance ambipolar and electronic type semiconducting polymers are essential for fabricating various organic optoelectronic devices and complementary circuits. This review summarizes the strategies of improving the electron transport of semiconducting polymers via acceptor modulation strategies, which include the use of single, dual, triple, multiple, and all acceptors as well as the fusion of multiple identical acceptors to obtain new heterocyclic acceptors. To further improve the electron transport of semiconducting polymers, the introduction of strong electron-withdrawing groups can enhance the electron-withdrawing ability of donors and acceptors, thereby facilitating electron injection and suppressing hole accumulation. In addition, the relationships between the molecular structure, frontier molecular orbital energy levels, thin film morphology, microstructure, processing conditions, and device performances are also comprehensively discussed. Finally, the challenges encountered in this research area are proposed and the future outlook is presented.
Collapse
Affiliation(s)
- Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
A thriving decade: rational design, green synthesis, and cutting-edge applications of isoindigo-based conjugated polymers in organic field-effect transistors. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Cheon HJ, An TK, Kim YH. Diketopyrrolopyrrole (DPP)-Based Polymers and Their Organic Field-Effect Transistor Applications: A Review. Macromol Res 2022. [DOI: 10.1007/s13233-022-0015-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Shanwu L, Chenyujie Z, Yinhao L, Yaru Z, Hanming T, Zongrui W, Yonggang Z. Research Progress in n-type Organic Semiconducting Materials Based on Amides or Imides. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Yang J, Jiang Y, Zhao Z, Yang X, Zhang Z, Chen J, Li J, Shi W, Wang S, Guo Y, Liu Y. A nonchlorinated solvent-processed polymer semiconductor for high-performance ambipolar transistors. Natl Sci Rev 2021; 9:nwab145. [PMID: 35475218 PMCID: PMC9031015 DOI: 10.1093/nsr/nwab145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Ambipolar polymer semiconductors are potentially serviceable for logic circuits, light-emitting field-effect transistors (LFETs) and polymer solar cells (PSCs). Although several high-performance ambipolar polymers have been developed, their optoelectronic devices are generally processed from toxic chlorinated solvents. To achieve the commercial applications of organic FETs (OFETs), the polymers should be processed from nonchlorinated solvents, instead of chlorinated solvents. However, most conjugated polymers show poor solubility in nonchlorinated solvents. It is of great importance to develop ambipolar polymers that can be processed from nonchlorinated solvents. Here, we develop a nonchlorinated solvent processed polymer named poly[7-fluoro-N, N′-di(4-decyltetradecyl)-7′-azaisoindigo-6′,6″-(thieno[3,2-b]thiophene-2,5-diyl)-7‴-fluoro-N″, N‴-di(4-decyltetradecyl)-7″-azaisoindigo-6,6‴-([2,2″-bithiophene]-5,5″-diyl)] (PITTI-BT) by designing a monomer with a large molar mass. The polymer displays good solubility in p-xylene (PX). Well-aligned films of PITTI-BT are achieved by an off-center spin-coating (SC) method. Based on the high-quality films, the OFETs fabricated from PX solution achieve record ambipolar performance with hole and electron mobilities of 3.06 and 2.81 cm2 V−1 s−1, respectively. The combination of nonchlorinated solvents and good alignment process offers an effective and eco-friendly approach to obtain high-performance ambipolar transistors.
Collapse
Affiliation(s)
- Jie Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaqian Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xueli Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Zheye Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Junyu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Zhou Y, Zhang W, Yu G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem Sci 2021; 12:6844-6878. [PMID: 34123315 PMCID: PMC8153080 DOI: 10.1039/d1sc01711j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Organic semiconductor materials, especially donor-acceptor (D-A) polymers, have been increasingly applied in organic optoelectronic devices, such as organic field-effect transistors (OFETs) and organic solar cells (OSCs). Plenty of high-performance OFETs and OSCs have been achieved based on varieties of structurally modified D-A polymers. As the basic building block of D-A polymers, acceptor moieties have drawn much attention. Among the numerous types, lactam- and imide-functionalized electron-deficient building blocks have been widely investigated. In this review, the structural evolution of lactam- or imide-containing acceptors (for instance, diketopyrrolopyrrole, isoindigo, naphthalene diimide, and perylene diimide) is covered and their representative polymers applied in OFETs and OSCs are also discussed, with a focus on the effect of varied structurally modified acceptor moieties on the physicochemical and photoelectrical properties of polymers. Additionally, this review discusses the current issues that need to be settled down and the further development of new types of acceptors. It is hoped that this review could help design new electron-deficient building blocks, find a more valid method to modify already reported acceptor units, and achieve high-performance semiconductor materials eventually.
Collapse
Affiliation(s)
- Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Zhao B, Liang Z, Zhang Y, Sui Y, Shi Y, Zhang X, Li M, Deng Y, Geng Y. Direct Arylation Polycondensation toward Water/Alcohol-Soluble Conjugated Polymers: Influence of Side Chain Functional Groups. ACS Macro Lett 2021; 10:419-425. [PMID: 35549230 DOI: 10.1021/acsmacrolett.1c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct arylation of 2,7-dibromofluorene with n-octyl, 6-diethoxylphosphorylhexyl, 6-(N,N-diethylamino)hexyl or 6-bromohexyl side chains and 1,2,4,5-tetrafluorobenzene (TFB) were conducted to investigate the effect of side chain functional groups on the coupling, and the resulting TFB-substituted fluorene derivatives were used as C-H monomers for the synthesis of water/alcohol soluble conjugated polymers (WSCPs) by direct arylation polycondensation (DArP). The direct arylation and DArP of the monomers carrying phosphonate and amino groups went on smoothly in typical DArP conditions, that is, Pd(OAc)2/PtBu2Me-HBF4/base/DMAc and Pd2(dba)3·CHCl3/P(o-MeOPh)3/pivalic acid/base/THF, and high molecular weight polymers with these groups were successfully synthesized. However, for fluorene-monomers with bromohexyl side chains, the target products could not be obtained from the above conditions but could be prepared in the absence of carboxylic acid additives in low polar solvents. With the above DArP-made polymers as cathode interfacial layers, high performance organic solar cells (OSCs) were successfully fabricated.
Collapse
Affiliation(s)
- Bowen Zhao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ziqi Liang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ying Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ying Sui
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xuwen Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Miaomiao Li
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| |
Collapse
|
12
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
13
|
Sui Y, Shi Y, Deng Y, Li R, Bai J, Wang Z, Dang Y, Han Y, Kirby N, Ye L, Geng Y. Direct Arylation Polycondensation of Chlorinated Thiophene Derivatives to High-Mobility Conjugated Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ying Sui
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Riqing Li
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Junhua Bai
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Zhongli Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Nigel Kirby
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Long Ye
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
14
|
Sparks NE, Ranathunge TA, Attanayake NH, Brodgon P, Delcamp JH, Rajapakse RMG, Watkins DL. Electrochemical Copolymerization of Isoindigo‐Based Donor‐Acceptor Polymers with Intrinsically Enhanced Conductivity and Near‐Infrared‐II Activity. ChemElectroChem 2020. [DOI: 10.1002/celc.202000897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nicholas E. Sparks
- Department of Chemistry and Biochemistry University of Mississippi University MS 38677-1848 USA
| | - Tharindu A. Ranathunge
- Department of Chemistry and Biochemistry University of Mississippi University MS 38677-1848 USA
| | | | - Phillip Brodgon
- Department of Chemistry and Biochemistry University of Mississippi University MS 38677-1848 USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry University of Mississippi University MS 38677-1848 USA
| | | | - Davita L. Watkins
- Department of Chemistry and Biochemistry University of Mississippi University MS 38677-1848 USA
| |
Collapse
|
15
|
Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Distannylated Bithiophene Imide: Enabling High‐Performance n‐Type Polymer Semiconductors with an Acceptor–Acceptor Backbone. Angew Chem Int Ed Engl 2020; 59:14449-14457. [DOI: 10.1002/anie.202002292] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Yongqiang Shi
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Jiachen Huang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Xianhe Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Yujie Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Kui Feng
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Ming Zhou
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Xugang Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
16
|
Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Distannylated Bithiophene Imide: Enabling High‐Performance n‐Type Polymer Semiconductors with an Acceptor–Acceptor Backbone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongqiang Shi
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Jiachen Huang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Xianhe Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Yujie Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Kui Feng
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Ming Zhou
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Xugang Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
17
|
Huang K, Huang G, Wang X, Lu H, Zhang G, Qiu L. Air-Stable and High-Performance Unipolar n-Type Conjugated Semiconducting Polymers Prepared by a "Strong Acceptor-Weak Donor" Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17790-17798. [PMID: 32212621 DOI: 10.1021/acsami.0c02322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unipolar n-type conjugated polymer materials with long-term stable electron transport upon direct exposure to the air atmosphere are very challenging to prepare. In this study, three unipolar n-type donor-acceptor (D-A) conjugated polymer semiconductors (abbreviated as PNVB, PBABDFV, and PBAIDV) were successfully developed through a "strong acceptor-weak donor" strategy. The weak electron donation of the donor units in all three polymers successfully lowered the molecular energy levels by the acceptor units that strongly attracted electrons. Cyclic voltammetry demonstrated that all three polymers had low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels near -6.0 and -4.0 eV, respectively. These results were consistent with the density functional theory calculations. The as-prepared polymers were then used to manufacture organic field-effect transistor (OFET) devices in bottom-gate/top-contact (BG/TC) configuration without any packaging protection. As expected, all devices exhibited unipolar electron transport properties. PBABDFV-based devices showed excellent field-effect performance and air stability, beneficial for straight-line molecular chain and closest π-π stacking distance to prevent water vapor and oxygen from diffusion into the active layer. This led to a maximum electron mobility (μe,max) of 0.79 cm2 V-1 s-1 under air conditions. In addition, 0.50 cm2 V-1 s-1 was still maintained after 27 days of storage in ambient environment. The near-ideal transfer curve of the PBABDFV-based OFET device in BG/TC configuration under vacuum was obtained with average mobility reliability factor (rave) reaching 88%.
Collapse
Affiliation(s)
- Kaiqiang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Gang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
18
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
19
|
Baig N, Shetty S, Fall S, Al-Mousawi S, Heiser T, Alameddine B. Conjugated copolymers bearing 2,7-dithienylphenanthrene-9,10-dialkoxy units: highly soluble and stable deep-blue emissive materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj01712d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excellent yields, high stability and solubility. Mw = 36.5–152.0 kDa and Đ = 2.5–3.0. Deep-blue emission with quantum yields up to 17%.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| | - Sadiara Fall
- Laboratoire ICube
- Université de Strasbourg
- CNRS
- UMR 7357
- Strasbourg
| | | | - Thomas Heiser
- Laboratoire ICube
- Université de Strasbourg
- CNRS
- UMR 7357
- Strasbourg
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| |
Collapse
|
20
|
Rech JJ, Yan L, Peng Z, Dai S, Zhan X, Ade H, You W. Utilizing Difluorinated Thiophene Units To Improve the Performance of Polymer Solar Cells. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jeromy J. Rech
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shuixing Dai
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaowei Zhan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Significant Difference in Semiconducting Properties of Isomeric All‐Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Wang
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
- Current address: Emergent Molecular Function Research Team Center for Emergent Matter Science (CEMS) RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
22
|
Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Significant Difference in Semiconducting Properties of Isomeric All-Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angew Chem Int Ed Engl 2019; 58:11893-11902. [PMID: 31210386 DOI: 10.1002/anie.201904966] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Indexed: 01/11/2023]
Abstract
The direct arylation polycondensation (DArP) appeared as an efficient method for producing semiconducting polymers but often requires acceptor monomers with orienting or activating groups for the reactive carbon-hydrogen (C-H) bonds, which limits the choice of acceptor units. In this study, we describe a DArP for producing high-molecular-weight all-acceptor polymers composed of the acceptor monomers without any orienting or activating groups via a modified method using Pd/Cu co-catalysts. We thus obtained two isomeric all-acceptor polymers, P1 and P2, which have the same backbone and side-chains but different positions of the nitrogen atoms in the thiazole units. This subtle change significantly influences their optoelectronic, molecular packing, and charge-transport properties. P2 with a greater backbone torsion has favorable edge-on orientations and a high electron mobility μe of 2.55 cm2 V-1 s-1 . Moreover, P2-based transistors show an excellent shelf-storage stability in air even after the storage for 1 month.
Collapse
Affiliation(s)
- Yang Wang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.,Current address: Emergent Molecular Function Research Team, Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
23
|
Barros R, Saji KJ, Waerenborgh JC, Barquinha P, Pereira L, Carlos E, Martins R, Fortunato E. Role of Structure and Composition on the Performances of P-Type Tin Oxide Thin-Film Transistors Processed at Low-Temperatures. NANOMATERIALS 2019; 9:nano9030320. [PMID: 30823629 PMCID: PMC6473352 DOI: 10.3390/nano9030320] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
This work reports on the role of structure and composition on the determination of the performances of p-type SnOx TFTs with a bottom gate configuration deposited by rf magnetron sputtering at room temperature, followed by a post-annealed step up to 200 °C at different oxygen partial pressures (Opp) between 0% and 20% but where the p-type conduction was only observed between in a narrow window, from 2.8% to 3.8%. The role of structure and composition were evaluated by XRD and Mössbauer spectroscopic studies that allows to identify the best phases/compositions and thicknesses (around 12 nm) to be used to produce p-type TFTs with saturation mobility of 4.6 cm2 V−1 s−1 and on-off ratio above 7 × 104, operating at the enhancement mode with a saturation voltage of −10 V. Moreover, a brief overview is also presented concerning the present state of the existing developments in processing SnOx TFTs with different methods and using different device configurations.
Collapse
Affiliation(s)
- Raquel Barros
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal.
- Hovione, Campus do Lumiar, Edifício S, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal.
| | - Kachirayil J Saji
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal.
- International School of Photonics, Cochin University of Science and Technology, Kochi ⁻ 682 022, India.
| | - João C Waerenborgh
- C2TN, DECN, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal.
| | - Pedro Barquinha
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Luís Pereira
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Emanuel Carlos
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Rodrigo Martins
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Elvira Fortunato
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
24
|
Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Significant Improvement of Unipolar n-Type Transistor Performances by Manipulating the Coplanar Backbone Conformation of Electron-Deficient Polymers via Hydrogen Bonding. J Am Chem Soc 2019; 141:3566-3575. [DOI: 10.1021/jacs.8b12499] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yang Wang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|