1
|
Jiang H, Li Z, Dai Y, Ling Y, Mei S, Wang H, Mou Z. Synthesis of Poly(δ-caprolactone) via Bis(phenolate) Rare-Earth Metal Complexes Mediated Ring-Opening Polymerization and Its Chemical Recycling. Inorg Chem 2024; 63:441-450. [PMID: 38149999 DOI: 10.1021/acs.inorgchem.3c03298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
New amine-amino-bis(phenolate) ligands (H2LtBu and H2LCl) with a cyclic tertiary amine (pyrrolidine) as a side arm and tBu or Cl group on the phenolate ring have been prepared. The alkane elimination reaction between these free ligands and rare-earth tris(alkyl)s Ln(CH2SiMe3)3(THF)2 afforded the corresponding silylalkyl complexes LtBuLnCH2SiMe3(THF) (Ln = Y (1), Lu (2)) and LClYCH2SiMe3(THF) (3), where the solid-state structure of complex 1 was unambiguously confirmed by X-ray diffraction (XRD) analysis. These rare-earth metal complexes have been utilized as catalysts for the ring-opening polymerization (ROP) of biobased δ-caprolactone (δCL), either in the absence or presence of alcohols, to give poly(δ-caprolactone) (PδCL) with controlled molecular weight and narrow distribution (Đ < 1.2). The polymerization kinetics of δCL in toluene with yttrium complexes 1 and 3 were investigated. Oligomers prepared with complex 3 alone and the 3/PhCHMeOH binary catalyst system were well characterized with 1H NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS). Moreover, chemical recycling of the resultant PδCL was achieved with high yield in a solution at ambient temperature (>92%) or in bulk at 130 °C (>82%) by using commercial KOtBu as a promotor.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Dai
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yidong Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shiqing Mei
- School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118 China
| | - Zehuai Mou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Zimny S, Tarnacka M, Wojnarowska Z, Heczko D, Maksym P, Paluch M, Kamiński K. Impact of the graft’ structure on the behavior of PMMS-based brushes. High pressure studies. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
3
|
Clarke BR, Tew GN. Synthesis and characterization of poly(ethylene glycol) bottlebrush networks via ring-opening metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2022; 60:1501-1510. [PMID: 35967758 PMCID: PMC9373913 DOI: 10.1002/pol.20210865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Herein it is reported how the overlap concentration (C*) can be used to overcome crosslinking due to diol impurities in commercial PEG, allowing for the synthesize of bottlebrush polymers with good control over molecular weight. Additionally, PEG-based bottlebrush networks are synthesized via ROMP, attaining high conversions with minimal sol fractions (<2%). The crystallinity and mechanical properties of these networks are then further altered by solvent swelling with phosphate buffer solution (PBS) and 1-ethyl-3-methylimidazolium ethyl sulfate/DCM cosolvents. The syntheses reported here highlight the potential of the bottlebrush network architecture for use in the rational design of new materials.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
4
|
Sakamoto Y, Nishimura T. Recent advances in the self-assembly of sparsely grafted amphiphilic copolymers in aqueous solution. Polym Chem 2022. [DOI: 10.1039/d2py01018f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review describes the self-assembly of sparsely grafted amphiphilic copolymers and highlights the effects of structural factors and solvents on their self-assembly behaviour.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
5
|
Fang A, Lin S, Ng FTT, Pan Q. Synthesis of core-shell bottlebrush polymers of poly(polycaprolactone-b-polyethylene glycol) via ring-opening metathesis polymerization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1969947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anqi Fang
- Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Shaohui Lin
- Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Flora T. T. Ng
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Qinmin Pan
- Green Polymer and Catalysis Technology Laboratory (GPACT), College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Alagi P, Zapsas G, Hadjichristidis N, Hong SC, Gnanou Y, Feng X. All-Polycarbonate Graft Copolymers with Tunable Morphologies by Metal-Free Copolymerization of CO 2 with Epoxides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Prakash Alagi
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Zapsas
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Sung Chul Hong
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Liu WB, Xu XH, Kang SM, Song X, Zhou L, Liu N, Wu ZQ. Bottlebrush Polymers Carrying Side Chains on Every Backbone Atom: Controlled Synthesis, Polymerization-Induced Emission, and Circularly Polarized Luminescence. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wen-Bin Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| |
Collapse
|
8
|
Ji E, Cummins C, Fleury G. Precise Synthesis and Thin Film Self-Assembly of PLLA- b-PS Bottlebrush Block Copolymers. Molecules 2021; 26:1412. [PMID: 33807816 PMCID: PMC7961899 DOI: 10.3390/molecules26051412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46-58 nm and periodicities of 70-102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.
Collapse
Affiliation(s)
| | | | - Guillaume Fleury
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (E.J.); (C.C.)
| |
Collapse
|
9
|
Vassiliadou O, Chrysostomou V, Pispas S, Klonos PA, Kyritsis A. Molecular dynamics and crystallization in polymers based on ethylene glycol methacrylates (EGMAs) with melt memory characteristics: from linear oligomers to comb-like polymers. SOFT MATTER 2021; 17:1284-1298. [PMID: 33305780 DOI: 10.1039/d0sm01666g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article we present results on the glass transition, crystallization and molecular dynamics in relatively novel oligomers, oligo-ethylene glycol methacrylate (OEGMA), with short and long chains, as well as in the corresponding nanostructured comb-like polymers (POEGMA, short and long), the latter being prepared via the RAFT polymerization process. For the investigation we employed conventional and temperature modulated differential scanning calorimetry in combination with high resolving power dielectric spectroscopy techniques, broadband dielectric relaxation spectroscopy (BDS) and thermally stimulated depolarization currents (TSDC). Under ambient conditions short OEGMA (475 g mol-1, ∼4 nm in length) exhibits a remarkable low glass transition temperature, Tg, of -91 °C, crystallization temperature Tc = -24 °C and a significant crystalline fraction, CF, of ∼30%. When doubling the number of monomers (OEGMA-long, 950 g mol-1, chain length ∼8 nm) the Tg increases by about 20 K and CF increases to ∼53%, whereas, the Tc migrates to a room-like temperature of 19 °C. Upon formation of comb-like POEGMA structures the grafted OEGMA short chains, strikingly, are not able to crystallize, while in POEGMA-long the crystallization behaviour changes significantly as compared to OEGMA. Our results indicate that in the comb-like architecture the chain diffusion of the amorphous fractions is also strongly affected. The semicrystalline systems exhibit significant melt memory effects, this being stronger in the comb-like architecture. It is shown that these effects are related to the inter- and intra-chain interactions of the crystallizable chains. The dielectric techniques allowed the molecular dynamics mapping of these new systems from the linear oligomers to POEGMAs for the first time. BDS and TSDC detected various dynamics processes, in particular, the local polymer dynamics (γ process) to be sensitive to the Tg, local dynamics triggered in the hydrophilic chain segments by water traces (β), as well as the segmental dynamics (α) related to glass transition. Interestingly, both the short and long linear OEGMAs exhibit an additional relaxation process that resembles the Normal-Mode process appearing in polyethers. In the corresponding POEGMAs this process could not be resolved, this being an effect of the one-side grafted chain on the comb backbone. The revealed variations in molecular mobility and crystallization behavior suggest the potentially manipulable diffusion of small molecules throughout the polymer volume, via both the molecular architecture as well as the thermal treatment. This ability is extremely useful for these novel materials, envisaging their future applications in biomedicine (drug encapsulation).
Collapse
Affiliation(s)
- Olga Vassiliadou
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Panagiotis A Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|
10
|
Hou C, Zhou C, Cheng J. One-shot synthesis of star gradient copolymers with controllable graft density. Polym Chem 2021. [DOI: 10.1039/d1py00313e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-shot synthesis of star gradient copolymers with controllable graft density via ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Cuiping Hou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chulu Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
11
|
Ahmed E, Womble CT, Weck M. Synthesis and Aqueous Self-Assembly of ABCD Bottlebrush Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Eman Ahmed
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - C. Tyler Womble
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
12
|
Jakobi B, Bichler KJ, Sokolova A, Schneider GJ. Dynamics of PDMS-g-PDMS Bottlebrush Polymers by Broadband Dielectric Spectroscopy. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Karin J. Bichler
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Anna Sokolova
- Australia Center for Neutron Scattering, ANSTO, New Illawarra Road, Lucas Heights 2234, Australia
| | - Gerald J. Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
Chen K, Hu X, Zhu N, Guo K. Design, Synthesis, and Self-Assembly of Janus Bottlebrush Polymers. Macromol Rapid Commun 2020; 41:e2000357. [PMID: 32844547 DOI: 10.1002/marc.202000357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Janus bottlebrush polymers are a class of special molecular brushes, which have two immiscible side chains on the repeating unit of the backbone. The characteristic architectures of Janus bottlebrush polymers enable unique self-assembly properties and broad applications. Recently, remarkable advances of Janus bottlebrush polymers have been achieved for polymer chemistry and material science. This review summarizes the synthetic strategies of Janus bottlebrush polymers, and highlights the self-assembly applications. Finally, the challenges and opportunities are proposed for the further development.
Collapse
Affiliation(s)
- Kerui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,College of Materials Science and Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| |
Collapse
|
14
|
Alexandris S, Peponaki K, Petropoulou P, Sakellariou G, Vlassopoulos D. Linear Viscoelastic Response of Unentangled Polystyrene Bottlebrushes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stelios Alexandris
- Institute of Electronic Structure and Laser, FORTH, Heraklion 700 13, Crete, Greece
| | - Katerina Peponaki
- Institute of Electronic Structure and Laser, FORTH, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Paraskevi Petropoulou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure and Laser, FORTH, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| |
Collapse
|
15
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Nikovia C, Sougioltzoupoulou E, Rigas V, Pitsikalis M. Macromolecular Brushes Based on Poly(L-Lactide) and Poly(ε-Caprolactone) Single and Double Macromonomers via ROMP. Synthesis, Characterization and Thermal Properties. Polymers (Basel) 2019; 11:E1606. [PMID: 31581578 PMCID: PMC6835319 DOI: 10.3390/polym11101606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/07/2023] Open
Abstract
Single and double poly(L-lactide) (PLLA) and poly(ε-caprolactone) (PCL) macromonomers having a norbornenyl polymerizable group were prepared by conventional Ring Opening Polymerization (ROP). These macromonomers were further subjected to ring opening metathesis polymerization (ROMP) reactions in order to produce double polymer brushes consisting of PLLA or PCL side chains on a polynorbornene (PNBE) backbone. Statistical or block ring opening metathesis copolymerization of the PLLA and PCL macromonomers afforded the corresponding random and block double brushes. Sequential ROMP of the single PLLA, PCL and PLLA macromonomers resulted in the synthesis of the corresponding triblock copolymer brush. The molecular characteristics of the macromolecular brushes were obtained by 1H-NMR spectroscopy and Size Exclusion Chromatography. The thermal properties of the samples were studied by thermogravimetric analysis, TGA, Differential Thermogravimetry, DTG and Differential Scanning Calorimetry, DSC.
Collapse
Affiliation(s)
- Christiana Nikovia
- Department of Chemistry, Industrial Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Eleftheria Sougioltzoupoulou
- Department of Chemistry, Industrial Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Vyron Rigas
- Department of Chemistry, Industrial Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Marinos Pitsikalis
- Department of Chemistry, Industrial Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
17
|
Zhang L, Zhao G, Wang G. Investigation of the influence of pressurized CO 2 on the crystal growth of poly(l-lactic acid) by using an in situ high-pressure optical system. SOFT MATTER 2019; 15:5714-5727. [PMID: 31265051 DOI: 10.1039/c9sm00737g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since CO2 is a kind of nontoxic, non-flammable and biocompatible fluid, introducing CO2 in the PLLA formation process has been regarded as a green way to the manufacture of biological products or medical supplies. However, it is still a challenge to understand the influence of CO2 on the crystal growth behavior of PLLA. Here, we developed an in situ high-pressure observation system, composed of optics, polarization optics and a small angle laser scattering system, to record the growth process of PLLA crystals in a pressurized CO2 environment. It is found that, at a low temperature (near Tg), low pressure CO2 (0.5 MPa in this work) can still induce the formation of numerous micron-sized spherulites of PLLA. Therefore, the introduction of CO2 can significantly enhance the crystallization ability of PLLA and decrease the crystallization temperature, which is helpful in improving the mechanical properties of PLLA products. We also found that a snowflake-shaped crystal was assembled by rhombic lamellae under pressurized CO2. There is a melt accumulation zone surrounding the growth front of the snowflake-shaped crystal, indicating that the growth front nucleation is limited by the pressurized CO2. This melt accumulation zone is quite different from the melt depletion zone existing ahead of the reported dendritic crystal front. Interestingly, in a high-pressure CO2 environment, a kind of bamboo-like branch is formed in a rhythmic growth mode. The repeating unit of the bamboo-like branch is constructed by an asymmetric terrace crystal originated from screw dislocation in the melt accumulation zone. These results demonstrated that CO2 has a remarkable tunability on the polymer crystal morphology.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, P. R. China.
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, P. R. China.
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, P. R. China.
| |
Collapse
|
18
|
Choinopoulos I. Grubbs' and Schrock's Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes-Synthesis, Characterization, Properties and Applications. Polymers (Basel) 2019; 11:E298. [PMID: 30960282 PMCID: PMC6419171 DOI: 10.3390/polym11020298] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/20/2022] Open
Abstract
In this review, molecular brushes and other macromolecular architectures bearing a bottlebrush segment where the main chain is synthesized by ring opening metathesis polymerization (ROMP) mediated by Mo or Ru metal complexes are considered. A brief review of metathesis and ROMP is presented in order to understand the problems and the solutions provided through the years. The synthetic strategies towards bottlebrush copolymers are demonstrated and each one discussed separately. The initiators/catalysts for the synthesis of the backbone with ROMP are discussed. Syntheses of molecular brushes are presented. The most interesting properties of the bottlebrushes are detailed. Finally, the applications studied by different groups are presented.
Collapse
Affiliation(s)
- Ioannis Choinopoulos
- Department of Chemistry, Industrial Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
19
|
Li Y, Schacher FH, Ling J. Synthesis of Polypeptoid‐Polycaprolactone‐Polytetrahydrofuran Heterograft Molecular Polymer Brushes via a Combination of Janus Polymerization and ROMP. Macromol Rapid Commun 2019; 40:e1800905. [DOI: 10.1002/marc.201800905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yao Li
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich‐Schiller‐University Jena Lessingstraße 8 D‐07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich‐Schiller‐University Jena Philosophenweg 7 D‐07743 Jena Germany
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
20
|
Sun H, Yu DM, Shi S, Yuan Q, Fujinami S, Sun X, Wang D, Russell TP. Configurationally Constrained Crystallization of Brush Polymers with Poly(ethylene oxide) Side Chains. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Duk Man Yu
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | | | - So Fujinami
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | - Thomas P. Russell
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Advanced Institute of Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|