1
|
Comí M, Moncho S, Attar S, Barłóg M, Brothers E, Bazzi HS, Al-Hashimi M. Structural-Functional Properties of Asymmetric Fluoro-Alkoxy Substituted Benzothiadiazole Homopolymers with Flanked Chalcogen-Based Heterocycles. Macromol Rapid Commun 2023; 44:e2200731. [PMID: 36285613 DOI: 10.1002/marc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Indexed: 11/08/2022]
Abstract
The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation. Optical property studies of the homopolymers reveal a strong red-shift in solution and film upon exchanging the chalcogen atom from Oxygen < Sulfur < Selenium in HPFu, HPTp, and HPSe, respectively. In addition, deeper highest occupied molecular orbital (HOMO) energy levels are observed when the donor-acceptor moieties (HPSe, HPTp, and HPFu) are substituted for the acceptor-acceptor systems such as HPTzC5, HPTzC2, and HPOx. Improved packing and morphology are exhibited for the donor-acceptor homopolymers. Thus, having a flanked heterocycle containing different chalcogen-atoms in polymeric systems is one way of tuning the physicochemical properties of conjugated materials for optoelectronic applications.
Collapse
Affiliation(s)
- Marc Comí
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salvador Moncho
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salahuddin Attar
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Maciej Barłóg
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Edward Brothers
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar.,Department of Materials Science & Engineering, Texas A&M University, 209 Reed MacDonald Building, College Station, TX, 77843-3003, USA
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| |
Collapse
|
2
|
A thriving decade: rational design, green synthesis, and cutting-edge applications of isoindigo-based conjugated polymers in organic field-effect transistors. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Incorporating Se atoms to organoboron polymer electron acceptors to tune opto-electronic properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Lv S, Li L, Mu Y, Wan X. Side-chain engineering as a powerful tool to tune the properties of polymeric field-effect transistors. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1855195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Siyu Lv
- School of Chemical & Environmental Engineering, Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Liang Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Youbing Mu
- School of Chemical & Environmental Engineering, Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- School of Chemical & Environmental Engineering, Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
5
|
Huang K, Huang G, Wang X, Lu H, Zhang G, Qiu L. Air-Stable and High-Performance Unipolar n-Type Conjugated Semiconducting Polymers Prepared by a "Strong Acceptor-Weak Donor" Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17790-17798. [PMID: 32212621 DOI: 10.1021/acsami.0c02322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unipolar n-type conjugated polymer materials with long-term stable electron transport upon direct exposure to the air atmosphere are very challenging to prepare. In this study, three unipolar n-type donor-acceptor (D-A) conjugated polymer semiconductors (abbreviated as PNVB, PBABDFV, and PBAIDV) were successfully developed through a "strong acceptor-weak donor" strategy. The weak electron donation of the donor units in all three polymers successfully lowered the molecular energy levels by the acceptor units that strongly attracted electrons. Cyclic voltammetry demonstrated that all three polymers had low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels near -6.0 and -4.0 eV, respectively. These results were consistent with the density functional theory calculations. The as-prepared polymers were then used to manufacture organic field-effect transistor (OFET) devices in bottom-gate/top-contact (BG/TC) configuration without any packaging protection. As expected, all devices exhibited unipolar electron transport properties. PBABDFV-based devices showed excellent field-effect performance and air stability, beneficial for straight-line molecular chain and closest π-π stacking distance to prevent water vapor and oxygen from diffusion into the active layer. This led to a maximum electron mobility (μe,max) of 0.79 cm2 V-1 s-1 under air conditions. In addition, 0.50 cm2 V-1 s-1 was still maintained after 27 days of storage in ambient environment. The near-ideal transfer curve of the PBABDFV-based OFET device in BG/TC configuration under vacuum was obtained with average mobility reliability factor (rave) reaching 88%.
Collapse
Affiliation(s)
- Kaiqiang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Gang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Shi W, Guo Y, Liu Y. When Flexible Organic Field-Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901493. [PMID: 31250497 DOI: 10.1002/adma.201901493] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Indexed: 06/09/2023]
Abstract
The emergence of flexible organic electronics that span the fields of physics and biomimetics creates the possibility for increasingly simple and intelligent products for use in everyday life. Organic field-effect transistors (OFETs), with their inherent flexibility, light weight, and biocompatibility, have shown great promise in the field of biomimicry. By applying such biomimetic OFETs for the internet of things (IoT) makes it possible to imagine novel products and use cases for the future. Recent advances in flexible OFETs and their applications in biomimetic systems are reviewed. Strategies to achieve flexible OFETs are individually discussed and recent progress in biomimetic sensory systems and nervous systems is reviewed in detail. OFETs are revealed to be one of the best systems for mimicking sensory and nervous systems. Additionally, a brief discussion of information storage based on OFETs is presented. Finally, a personal view of the utilization of biomimetic OFETs in the IoT and future challenges in this research area are provided.
Collapse
Affiliation(s)
- Wei Shi
- Beijing National Laboratory for Molecular Sciences, Organic Solid Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solid Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solid Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
7
|
Neto JSS, Krüger R, Balaguez RA, Fronza MG, Acunha TV, Oliboni RS, Savegnago L, Iglesias BA, Alves D. Synthesis, photophysics and biomolecule interactive studies of new hybrid benzo-2,1,3-thiadiazoles. NEW J CHEM 2020. [DOI: 10.1039/c9nj05932f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
New hybrid molecules containing benzo-2,1,3-thiadiazole, benzofuran and arylselanyl moieties were synthesized and their photophysics and biomolecule interactive studies were performed.
Collapse
Affiliation(s)
- José S. S. Neto
- Laboratório de Síntese Orgânica Limpa
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Roberta Krüger
- Laboratório de Síntese Orgânica Limpa
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Renata A. Balaguez
- Laboratório de Síntese Orgânica Limpa
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Mariana G. Fronza
- Programa de Pós-Graduação em Biotecnologia (PPGB)
- Grupo de Pesquisa em Neurobiotecnologia – GPN
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Thiago V. Acunha
- Departament of Chemistry
- Laboratório de Bioinorgânica e Materiais Porfirínicos
- Universidade Federal de Santa Maria
- UFSM
- 97115-900 Santa Maria – RS
| | - Robson S. Oliboni
- Grupo de Catálise e Estudos Teóricos
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia (PPGB)
- Grupo de Pesquisa em Neurobiotecnologia – GPN
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| | - Bernardo A. Iglesias
- Departament of Chemistry
- Laboratório de Bioinorgânica e Materiais Porfirínicos
- Universidade Federal de Santa Maria
- UFSM
- 97115-900 Santa Maria – RS
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa
- Universidade Federal de Pelotas
- Pelotas
- Brazil
| |
Collapse
|
8
|
Tang Z, Wei X, Zhang W, Zhou Y, Wei C, Huang J, Chen Z, Wang L, Yu G. An A−D−Aʹ−Dʹ strategy enables perylenediimide-based polymer dyes exhibiting enhanced electron transport characteristics. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|