1
|
Mu R, Yang L, Wang X, Yang B, Li J, Wang A, Zhang G, Sun C, Wu Y, Yu B, Li B. Mechanically Stable and Biocompatible Polymer Brush Coated Dental Materials with Lubricious and Antifouling Properties. Macromol Biosci 2024:e2400194. [PMID: 39073313 DOI: 10.1002/mabi.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Surface modification plays a crucial role in enhancing the functionality of implanted interventional medical devices, offering added advantages to patients, particularly in terms of lubrication and prevention of undesired adsorption of biomolecules and microorganisms, such as proteins and bacteria, on the material surfaces. Utilizing polymer brushes for surface modification is currently a promising approach to maintaining the inherent properties of materials while introducing new functionalities to surfaces. Here, surface-initiated atom transfer radical polymerization (SI-ATRP) technology to effectively graft anionic, cationic, and neutral polymer brushes from a mixed silane initiating layer is employed. The presence of a polymer brush layer significantly enhances the lubrication performance of the substrates and ensures a consistently low coefficient of friction over thousands of friction cycles in aqueous environments. The antimicrobial efficacy of polymer brushes is evaluated against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). It is observed that polym er brushes grafted to diverse substrate surfaces displays notable antibacterial properties, effectively inhibiting bacterial attachment. Furthermore, the polymer brush layer shows favorable biocompatibility and anti-inflammatory characteristics, which shows potential applications in dental materials, and other fields such as catheters and food packaging.
Collapse
Affiliation(s)
- Rong Mu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Ling Yang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Xinyue Wang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Binrui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Aijun Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Guorui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chufeng Sun
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000, China
| |
Collapse
|
2
|
Niu B, Huang H, Zhang L, Tan J. Grafting Block Copolymer Nanoparticles to a Surface via Aqueous Photoinduced Polymerization-induced Self-Assembly at Room Temperature. ACS Macro Lett 2024; 13:577-585. [PMID: 38648524 DOI: 10.1021/acsmacrolett.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The creation of well-defined surface nanostructures is important for a diverse set of applications such as cell adhesion, superhydrophobic coating, and lithography. In this study, we describe a robust bottom-up method for surface functionalization that involves surface-initiated reversible deactivation radical polymerization (RDRP) and the grafting of block copolymer nanoparticles to material surfaces via aqueous photoinduced polymerization-induced self-assembly (photo-PISA) at room temperature. Using silica nanoparticles as a model substrate, colloidal mesoscale hybrid assemblies with various morphologies were successfully prepared. The morphologies can be easily tuned by changing the lengths of macromolecular chain transfer agents and parameters of the silica nanoparticles. The surface-initiated photo-PISA approach can also be employed for other large-scale substrates such as silicon wafer. Taking advantage of mild reaction conditions of this method (room temperature, aqueous medium, and visible light), enzymatic deoxygenation was introduced to develop oxygen-tolerant surface-initiated photo-PISA that can fabricate well-defined nanostructures on large-scale substrates under open-to-air conditions.
Collapse
Affiliation(s)
- Bing Niu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Honggao Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang J, Hu F, Sant S, Chu K, Riemer L, Damjanovic D, Kilbey SM, Klok HA. Pyroelectric Polyelectrolyte Brushes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307038. [PMID: 38112160 DOI: 10.1002/adma.202307038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Piezo- and pyroelectric materials are of interest, for example, for energy harvesting applications, for the development of tactile sensors, as well as neuromorphic computing. This study reports the observation of pyro- and piezoelectricity in thin surface-attached polymer brushes containing zwitterionic and electrolytic side groups that are prepared via surface-initiated polymerization. The pyro- and piezoelectric properties of the surface-grafted polyelectrolyte brushes are found to sensitively depend on and can be tuned by variation of the counterion. The observed piezo- and pyroelectric properties reflect the structural complexity of polymer brushes, and are attributed to a complex interplay of the non-uniform segment density within these films, together with a non-uniform distribution of counterions and specific ion effects. The fabrication of thin pyroelectric films by surface-initiated polymerization is an important addition to the existing strategies toward such materials. Surface-initiated polymerization, in particular, allows for facile grafting of polar thin polymer films from a wide range of substrates via a straightforward two-step protocol that obviates the need for multistep laborious synthetic procedures or thin film deposition protocols. The ability to produce polymer brushes with piezo- and pyroelectric properties opens up new avenues of application of these materials, for example, in energy harvesting or biosensing.
Collapse
Affiliation(s)
- Jian Wang
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Fei Hu
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Sabrina Sant
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Kanghyun Chu
- Group for Ferroelectrics and Functional Oxides, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lukas Riemer
- Group for Ferroelectrics and Functional Oxides, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dragan Damjanovic
- Group for Ferroelectrics and Functional Oxides, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - S Michael Kilbey
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Harm-Anton Klok
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
4
|
Sato T, Dunderdale GJ, Hozumi A. Threshold of Surface Initiator Concentration for Polymer Brush Growth by Surface-Initiated Atom Transfer Radical Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:480-488. [PMID: 38127729 DOI: 10.1021/acs.langmuir.3c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The surface modification of various materials by grafting functional molecules has attracted much attention from fundamental research to practical applications because of its ability to impart various physical and chemical properties to the surfaces. One promising approach is the use of polymer brushes synthesized by atom transfer radical polymerization (ATRP) from surface-tethered initiators (SIs). In this study, for the purpose of controlling the grafting amounts/densities of polymer brushes, we developed a facile method to precisely regulate SI concentrations of SI layers (SILs) by serial dilution based on a sol-gel method. By simply mixing organosilanes terminated with and without an initiator group ((p-chloromethyl) phenyltrimethoxysilane (CMPTMS) and phenyltrimethoxysilane (PTMS), respectively) with tetraethoxysilane (TEOS), SI concentrations of SILs could be arbitrarily tuned precisely by varying dilution factors of (CMPTMS + PTMS)/CMPTMS (DFs, 1-107). The resulting SILs prepared at different DFs were highly smooth and transparent. X-ray photoelectron spectroscopy (XPS) also confirmed that the SIs were homogeneously distributed at the topmost surface of the SILs and their concentrations were proven to be accurately and precisely controlled from high to extremely low, comparable to theoretical values. Subsequent SI-ATRP in air ("paint-on" SI-ATRP) of two different types of monomers (hydrophobic/nonionic (2,3,4,5,6-pentafluorostyrene) and hydrophilic/ionic (sodium 4-styrenesulfonate)) demonstrated that polymer brushes with different grafting amounts/densities were successfully grafted only from SILs with DFs of 1-104 (theoretical SI concentrations: 3.9 × 10-4 ∼ 3.5 units/nm2), while at DFs of 105 and above (theoretical SI concentrations: <3.9 × 10-5 units/nm2), no sign of polymer brush growth was confirmed by thickness, XPS, and water contact angle data. Therefore, we are the first to gather evidence that the approximate threshold of SI concentration required for "paint-on" SI-ATRP might be on the order of 10-4 ∼ 10-5 units/nm2.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
5
|
Gazzola G, Filipucci I, Rossa A, Matyjaszewski K, Lorandi F, Benetti EM. Oxygen Tolerance during Surface-Initiated Photo-ATRP: Tips and Tricks for Making Brushes under Environmental Conditions. ACS Macro Lett 2023; 12:1166-1172. [PMID: 37526233 DOI: 10.1021/acsmacrolett.3c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Achieving tolerance toward oxygen during surface-initiated reversible deactivation radical polymerization (SI-RDRP) holds the potential to translate the fabrication of polymer brush-coatings into upscalable and technologically relevant processes for functionalizing materials. While focusing on surface-initiated photoinduced atom transfer radical polymerization (SI-photoATRP), we demonstrate that a judicious tuning of the composition of reaction mixtures and the adjustment of the polymerization setup enable to maximize the compatibility of this grafting technique toward environmental conditions. Typically, the presence of O2 in the polymerization medium limits the attainable thickness of polymer brushes and causes the occurrence of "edge effects", i.e., areas at the substrates' edges where continuous oxygen diffusion from the surrounding environment inhibits brush growth. However, the concentrations of the Cu-based catalyst and "free" alkyl halide initiator in solution emerge as key parameters to achieve a more efficient consumption of oxygen and yield uniform and thick brushes, even for polymerization mixtures that are more exposed to air. Precise variation of reaction conditions thus allows us to identify those variables that become determinants for making the synthesis of brushes more tolerant toward oxygen, and consequently more practical and upscalable.
Collapse
Affiliation(s)
- Gianluca Gazzola
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Irene Filipucci
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Andrea Rossa
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
6
|
Sato T, Amano A, Dunderdale GJ, Hozumi A. Transparent Composite Films Showing Durable Antifogging and Repeatable Self-Healing Properties Based on an Integral Blend Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9874-9883. [PMID: 35920887 DOI: 10.1021/acs.langmuir.2c01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antifogging coatings for infrastructures and transparent objects have attracted much attention lately from the perspective of safety and visibility. We have developed a one-pot process to fabricate transparent composite films showing long-lasting antifogging and fast repeatable self-healing properties based on an integral blend (IB) method. This method does not require any specific pretreatments of inorganic fillers/particles. Thus, the precursor solutions could be prepared in a single step by simply mixing raw materials, e.g., poly(vinylpyrrolidone) (PVP) having different molecular weights (MWs: 55, 360, and 1300 k), nano-clay particles (NCPs), and amino-terminated organosilane (AOS). In this study, to control the degree of cross-linking between the PVP matrices and NCPs, addition of AOS as a cross-linker to the PVP matrices (weight percentage of AOS to the PVP matrices, α = 0.01-300%) was carefully controlled. Transparency and self-healing abilities/kinetics of the resulting samples were found to be strongly influenced by both the MWs of PVP and α values. Samples spin-coated with the lowest MW of PVP (55 k) and α values of 0.01-1% gave highly transparent and durable antifogging performance. For example, no fogging was observed for 7 days under >80% relative humidity, and scratches about 30 μm in width could be completely self-healed within a few hours. However, samples with α > 10% gave opaque/grayish films that did not show any self-healing abilities because of an increase in cross-linking of the matrices. The optimized precursor solution was also deposited directly onto the glass slides covered with a transparent porous silica nano-framework (SNF) by a spray-coating method. Due to the formation of the hard and superhydrophilic/hygroscopic SNF with a large surface area, durability of antifogging and self-healing properties of the composite films were moderately improved, compared to those on the flat glass slides.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Asei Amano
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Graduate School of Engineering, Aichi Institute of Technology (AIT), 1247 Yachigusa, Yakusa, Toyoya 470-0392, Japan
| |
Collapse
|
7
|
Flejszar M, Ślusarczyk K, Chmielarz P, Wolski K, Isse AA, Gennaro A, Wytrwal-Sarna M, Oszajca M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Liu Y, Li R, Xu R, Liu Y, Wu Y, Ma S, Ma Z, Pei X, Zhou F. Repeatedly Regenerating Mechanically Robust Polymer Brushes from Persistent Initiator Coating (PIC). Angew Chem Int Ed Engl 2022; 61:e202204410. [DOI: 10.1002/anie.202204410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yizhe Liu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Renjie Li
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Rongnian Xu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yubo Liu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Qingdao Centre of Resource Chemistry and New Materials Shandong Qingdao 266100 China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Qingdao Centre of Resource Chemistry and New Materials Shandong Qingdao 266100 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Advanced Materials and Green Manufacturing Yantai 264006 China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Advanced Materials and Green Manufacturing Yantai 264006 China
| | - Xiaowei Pei
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Advanced Materials and Green Manufacturing Yantai 264006 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Fromel M, Pester CW. Polycarbonate Surface Modification via Aqueous SI-PET-RAFT. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Liu Y, Li R, Xu R, Liu Y, Wu Y, Ma S, Ma Z, Pei X, Zhou F. Repeatedly Regenerating Mechanically Robust Polymer Brushes from Persistent Initiator Coating (PIC). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yizhe Liu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Renjie Li
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Rongnian Xu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yubo Liu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Qingdao Centre of Resource Chemistry and New Materials Shandong Qingdao 266100 China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Qingdao Centre of Resource Chemistry and New Materials Shandong Qingdao 266100 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Advanced Materials and Green Manufacturing Yantai 264006 China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Advanced Materials and Green Manufacturing Yantai 264006 China
| | - Xiaowei Pei
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Gansu Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Advanced Materials and Green Manufacturing Yantai 264006 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Fromel M, Benetti EM, Pester CW. Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology? ACS Macro Lett 2022; 11:415-421. [PMID: 35575317 DOI: 10.1021/acsmacrolett.2c00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.
Collapse
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edmondo M. Benetti
- Dipartimento di Scienze Chimiche, University of Padua, 35122 Padova, Italy
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Masuda T, Takai M. Design of biointerfaces composed of soft materials using controlled radical polymerizations. J Mater Chem B 2022; 10:1473-1485. [PMID: 35044413 DOI: 10.1039/d1tb02508b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soft interface materials have an immense potential for the improvement of biointerfaces, which are the interface of biological and artificially designed materials. Controlling the chemical and physical structures of the interfaces at the nanometer level plays an important role in understanding the mechanism of the functioning and its applications. Controlled radical polymerization (CRP) techniques, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, have been developed in the field of precision polymer chemistry. It allows the formation of well-defined surfaces such as densely packed polymer brushes and self-assembled nanostructures of block copolymers. More recently, a novel technique to prepare polymers containing biomolecules, called biohybrids, has also been developed, which is a consequence of the advancement of CRP so as to proceed in an aqueous media with oxygen. This review article summarizes recent advances in CRP for the design of biointerfaces.
Collapse
Affiliation(s)
- Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
13
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
14
|
Albers RF, Magrini T, Romio M, Leite ER, Libanori R, Studart AR, Benetti EM. Fabrication of Three-Dimensional Polymer-Brush Gradients within Elastomeric Supports by Cu 0-Mediated Surface-Initiated ATRP. ACS Macro Lett 2021; 10:1099-1106. [PMID: 35549080 DOI: 10.1021/acsmacrolett.1c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cu0-mediated surface-initiated ATRP (Cu0 SI-ATRP) emerges as a versatile, oxygen-tolerant process to functionalize three-dimensional (3D), microporous supports forming single and multiple polymer-brush gradients with a fully tunable composition. When polymerization mixtures are dispensed on a Cu0-coated plate, this acts as oxygen scavenger and source of active catalyst. In the presence of an ATRP initiator-bearing microporous elastomer placed in contact with the metallic plate, the reaction solution infiltrates by capillarity through the support, simultaneously triggering the controlled growth of polymer brushes. The polymer grafting process proceeds with kinetics that are determined by the progressive infiltration of the reaction solution within the microporous support and by the continuous diffusion of catalyst regenerated at the Cu0 surface. The combination of these effects enables the accessible generation of 3D polymer-brush gradients extending across the microporous scaffolds used as supports, finally providing materials with a continuous variation of interfacial composition and properties.
Collapse
Affiliation(s)
- Rebecca Faggion Albers
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Tommaso Magrini
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
| | - Edson R. Leite
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - André R. Studart
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
15
|
Szczepaniak G, Fu L, Jafari H, Kapil K, Matyjaszewski K. Making ATRP More Practical: Oxygen Tolerance. Acc Chem Res 2021; 54:1779-1790. [PMID: 33751886 DOI: 10.1021/acs.accounts.1c00032] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atom-transfer radical polymerization (ATRP) is a well-known technique for the controlled polymerization of vinyl monomers under mild conditions. However, as with any other radical polymerization, ATRP typically requires rigorous oxygen exclusion, making it time-consuming and challenging to use by nonexperts. In this Account, we discuss various approaches to achieving oxygen tolerance in ATRP, presenting the overall progress in the field.Copper-mediated ATRP, which we first discovered in the late 1990s, uses a CuI/L activator that reversibly reacts with the dormant C(sp3)-X polymer chain end, forming a X-CuII/L deactivator and a propagating radical. Oxygen interferes with activation and chain propagation by quenching the radicals and oxidizing the activator. At ATRP equilibrium, the activator is present at a much higher concentration than the propagating radicals. Thus, oxidation of the activator is the dominant inhibition pathway. In conventional ATRP, this reaction is irreversible, so oxygen must be strictly excluded to achieve good results.Over the last two decades, our group has developed several ATRP techniques based on the concept of regenerating the activator. When the oxidized activator is continuously converted back to its active reduced form, then the catalytic system itself can act as an oxygen scavenger. Regeneration can be accomplished by reducing agents and photo-, electro-, and mechanochemical stimuli. This family of methods offers a degree of oxygen tolerance, but most of them can tolerate only a limited amount of oxygen and do not allow polymerization in an open vessel.More recently, we discovered that enzymes can be used in auxiliary catalytic systems that directly deoxygenate the reaction medium and protect the polymerization process. We developed a method that uses glucose oxidase (GOx), glucose, and sodium pyruvate to very effectively scavenge oxygen and enable open-vessel ATRP. By adding a second enzyme, horseradish peroxidase (HPR), we managed to extend the role of the auxiliary enzymatic system to generating carbon-based radicals and changed ATRP from an oxygen-sensitive to an oxygen-fueled reaction.While performing control experiments for the enzymatic methods, we noticed that using sodium pyruvate under UV irradiation triggers polymerization without the presence of GOx. This serendipitous discovery allowed us to develop the first oxygen-proof, small-molecule-based, photoinduced ATRP system. It has oxygen tolerance similar to that of the enzymatic methods, exhibits superior compatibility with both aqueous media and organic solvents, and avoids problems associated with purifying polymers from enzymes. The system was able to rapidly polymerize N-isopropylacrylamide, a challenging monomer, with a high degree of control.These contributions have substantially simplified the use of ATRP, making it more practical and accessible to everyone.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Luo Y, Wang M, Wan C, Cai P, Loh XJ, Chen X. Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001903. [PMID: 32743815 DOI: 10.1002/adma.202001903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Flexible electronics have witnessed exciting progress in academia over the past decade, but most of the research outcomes have yet to be translated into products or gain much market share. For mass production and commercialization, industrial adoption of newly developed functional materials and fabrication techniques is a prerequisite. However, due to the disparate features of academic laboratories and industrial plants, translating materials and manufacturing technologies from labs to fabs is notoriously difficult. Therefore, herein, key challenges in the materials manufacturing of flexible electronics are identified and discussed for its lab-to-fab translation, along the four stages in product manufacturing: design, materials supply, processing, and integration. Perspectives on industry-oriented strategies to overcome some of these obstacles are also proposed. Priorities for action are outlined, including standardization, iteration between basic and applied research, and adoption of smart manufacturing. With concerted efforts from academia and industry, flexible electronics will bring a bigger impact to society as promised.
Collapse
Affiliation(s)
- Yifei Luo
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
18
|
Sato T, Dunderdale GJ, Hozumi A. Large-Scale Formation of Fluorosurfactant-Doped Transparent Nanocomposite Films Showing Durable Antifogging, Oil-Repellent, and Self-healing Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7439-7446. [PMID: 32513010 DOI: 10.1021/acs.langmuir.0c00990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transparent nanocomposite films with multiple functionalities, such as durable antifogging, dynamic oleophobic, self-healing properties, were successfully prepared by a simple spin- or spray-coating method using aqueous solutions of poly(vinylpyrrolidone) (PVP) and aminopropyl-functionalized nanoclay (AMP-clay) platelets. In this study, anionic/waterborne perfluorooctanesulfonic acid potassium salt (PFOS) was premixed with the aqueous PVP solution to achieve a homogeneous dispersion of PFOS. Due to the addition of PFOS, the resulting nanocomposite film surfaces displayed statically hydrophobic (static water contact angle over 90°) and dynamically oleophobic (5 μL of oil droplets could slide off of the surface at low sliding/substrate tilt angles of less than 10°) behaviors. In spite of our nanocomposite film surface exhibiting a statically hydrophobic nature, the antifogging properties remained unchanged even after being left under high-humidity conditions (over 80% relative humidity) for 3 days. Thanks to both exceptional water-absorbing properties of PVP/AMP-clay matrices and good mobility of PFOS driven by moisture, our oil-repellent nanocomposite films could be repeatedly self-healed even after both severe physical (cutting, scratching, or falling sand abrasion) and chemical (vacuum UV oxidation) damages. Large-scale fabrication of this multifunctional nanocomposite film (30 cm × 30 cm) could also be successfully demonstrated by a spray-coating method based on in situ gel formation.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-shidami, Moriyama, Nagoya 463-8560, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-shidami, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
19
|
Buhl KB, Agergaard AH, Lillethorup M, Nikolajsen JP, Pedersen SU, Daasbjerg K. Polymer Brush Coating and Adhesion Technology at Scale. Polymers (Basel) 2020; 12:E1475. [PMID: 32630138 PMCID: PMC7407671 DOI: 10.3390/polym12071475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023] Open
Abstract
Creating strong joints between dissimilar materials for high-performance hybrid products places high demands on modern adhesives. Traditionally, adhesion relies on the compatibility between surfaces, often requiring the use of primers and thick bonding layers to achieve stable joints. The coatings of polymer brushes enable the compatibilization of material surfaces through precise control over surface chemistry, facilitating strong adhesion through a nanometer-thin layer. Here, we give a detailed account of our research on adhesion promoted by polymer brushes along with examples from industrial applications. We discuss two fundamentally different adhesive mechanisms of polymer brushes, namely (1) physical bonding via entanglement and (2) chemical bonding. The former mechanism is demonstrated by e.g., the strong bonding between poly(methyl methacrylate) (PMMA) brush coated stainless steel and bulk PMMA, while the latter is shown by e.g., the improved adhesion between silicone and titanium substrates, functionalized by a hydrosilane-modified poly(hydroxyethyl methacrylate) (PHEMA) brush. This review establishes that the clever design of polymer brushes can facilitate strong bonding between metals and various polymer materials or compatibilize fillers or nanoparticles with otherwise incompatible polymeric matrices. To realize the full potential of polymer brush functionalized materials, we discuss the progress in the synthesis of polymer brushes under ambient and scalable industrial conditions, and present recent developments in atom transfer radical polymerization for the large-scale production of brush-modified materials.
Collapse
Affiliation(s)
- Kristian Birk Buhl
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
| | - Asger Holm Agergaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
| | | | - Jakob Pagh Nikolajsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Steen Uttrup Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
- Radisurf ApS, Arresoevej 5B, DK-8240 Risskov, Denmark
| |
Collapse
|
20
|
Recent trends in nanopore polymer functionalization. Curr Opin Biotechnol 2020; 63:200-209. [PMID: 32387643 DOI: 10.1016/j.copbio.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Functional nanopores play an essential role in many biotechnological applications such as sensing, or drug delivery. Prominent examples are polymer functionalized ceramic or solid state nanopores. Intensive research efforts led to a discovery of a plethora of polymer functionalized nanopores demonstrating gated molecular transport upon basically all common stimuli. Nevertheless, nature's biological pore transport precision is unreached. This can be, among others, ascribed to limits in design precision especially with respect to functionalization. Recent trends in polymer functionalized nanopores address the role of confinement and polymerization control, strategies toward more sustainable reaction conditions, such as visible light initiation and strategies toward nanoscale local placement of polymer functionalization. The resulting multi-stimuli responsive nanopore performance enables concerted release or transport, side selective separation and selective detection.
Collapse
|
21
|
Yan W, Dadashi-Silab S, Matyjaszewski K, Spencer ND, Benetti EM. Surface-Initiated Photoinduced ATRP: Mechanism, Oxygen Tolerance, and Temporal Control during the Synthesis of Polymer Brushes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas D. Spencer
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
22
|
Faggion Albers R, Yan W, Romio M, Leite ER, Spencer ND, Matyjaszewski K, Benetti EM. Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate. Polym Chem 2020. [DOI: 10.1039/d0py01233e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SI-Zn0-ATRP enables the synthesis of chemically different polymer brushes under full ambient conditions, using just microliter volumes of reaction solutions.
Collapse
Affiliation(s)
| | - Wenqing Yan
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | - Edson R. Leite
- Department of Chemistry
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
- Brazilian Nanotechnology National Laboratory (LNNano)
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | | | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| |
Collapse
|
23
|
He T, Xing Z, Wang Y, Wu D, Liu Y, Liu X. Direct fluorination as a one-step ATRP initiator immobilization for convenient surface grafting of phenyl ring-containing substrates. Polym Chem 2020. [DOI: 10.1039/d0py00860e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct fluorination is proposed as a one-step ATRP initiator immobilization and the C–F added on the phenyl ring is demonstrated to be more suitable for initiation of ATRP.
Collapse
Affiliation(s)
- Taijun He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Zhenyu Xing
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yixing Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Difeng Wu
- Sichuan EM Technology Co
- Ltd
- Mianyang 621000
- China
| | - Yang Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xiangyang Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| |
Collapse
|
24
|
Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101180] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Li W, Sheng W, Jordan R, Zhang T. Boosting or moderating surface-initiated Cu(0)-mediated controlled radical polymerization with external additives. Polym Chem 2020. [DOI: 10.1039/d0py01061h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
External additives regulate the copper disproportionation/comproportionation equilibrium to control polymer brush growth in surface-initiated Cu(0)-mediated controlled radical polymerization.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Rainer Jordan
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
26
|
Xu L, Li HL, Wang LP. PH-Sensitive, Polymer Functionalized, Nonporous Silica Nanoparticles for Quercetin Controlled Release. Polymers (Basel) 2019; 11:E2026. [PMID: 31817771 PMCID: PMC6960605 DOI: 10.3390/polym11122026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Some pH-sensitive, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) grafted silica nanoparticles (SNPs) (SNPs-g-PDEAEMA) were designed and synthesized via surface initiated, metal-free, photoinduced atom transfer radical polymerization (ATRP). The structures of the polymers formed in solution were determined by 1H NMR. The modified nanoparticles were characterized by FT-IR spectroscopy, XPS, GPC, TEM and TGA. The analytical results show that α-bromoisobutyryl bromide (BIBB) (ATRP initiator) had been successfully anchored onto SNPs' surfaces, and was followed by surface-initiated, metal-free ATRP of 2-(diethylamino)ethyl methacrylate (DEAEMA). The resultant SNPs-g-PDEAEMA were uniform spherical nanoparticles with the particles size of about 22-25 nm, and the graft density of PDEAEMA on SNPs' surfaces obtained by TGA was 19.98 μmol/m2. Owing to the covalent grafting of pH-sensitive PDEAEMA, SNPs-g-PDEAEMA can dispersed well in acidic aqueous solution, but poorly in neutral and alkaline aqueous solutions, which is conducive to being employed as drug carriers to construct a pH-sensitive controlled drug delivery system. In vitro cytotoxicity evaluation results showed that the cytotoxicity of SNPs-g-PDEAEMA to the L929 cells had completely disappeared on the 3rd day. The loading of quercetin on SNPs-g-PDEAEMA was performed using adsorption process from ethanol solutions, and the dialysis release rate increased sharply when the pH value of phosphate-buffered saline (PBS) decreased from 7.4 to 5.5. All these results indicated that the pH-responsive microcapsules could serve as potential anti-cancer drug carriers.
Collapse
Affiliation(s)
- Lin Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Hong-Liang Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Li-Ping Wang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
27
|
Jeong W, Kang H, Kim E, Jeong J, Hong D. Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13268-13274. [PMID: 31573813 DOI: 10.1021/acs.langmuir.9b02219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we developed a uniform initiator layer that can be formed on various surfaces, and formed site-selectively, for the subsequent antifouling polymer brush formation. Initially, metal-organic films composed of tannic acid (TA) and FeIII ions (TA-FeIII) were formed on various surfaces, followed by functionalization with an aryl azide-based initiator (ABI) under photoreaction. In particular, combination with a photolithographic technique enabled the presentation of initiators only on the intended region within a single-surface platform. A resultant initiator film (TF-ABI) was formed under mild reaction conditions and meets the uniformity and transparency requirements concurrently. Subsequently, we showed that TF-ABI can be further utilized to form a polymer brush by proceeding with surface-initiated polymerization using a zwitterionic monomer, namely, sulfobetaine acrylamide (SBAA). Instead of applying a classical, yet air-sensitive atom transfer radical polymerization (ATRP) technique, we utilized an activator regenerated by electron transfer (ARGET) ATRP under air conditions without a cumbersome deoxygenation step. Overall, our initiator layer allowed the antifouling poly(SBAA) brush to be used on various surfaces, and enabled their pattern generation.
Collapse
Affiliation(s)
- Wonwoo Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Hyeongeun Kang
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Eunseok Kim
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Jaehoon Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| |
Collapse
|
28
|
Yan W, Fantin M, Ramakrishna S, Spencer ND, Matyjaszewski K, Benetti EM. Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu 0-Mediated Surface-Initiated ATRP. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27470-27477. [PMID: 31276375 DOI: 10.1021/acsami.9b09529] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cu0-mediated surface-initiated atom transfer radical polymerization (Cu0 SI-ATRP) is a highly versatile, oxygen-tolerant, and extremely controlled polymer-grafting technique that enables the modification of flat inorganic surfaces, as well as porous organic and polymeric supports of different compositions. Exploiting the intimate contact between a copper plate, acting as a source of catalyst and reducing agent, and an initiator-bearing support, Cu0 SI-ATRP enables the rapid growth of biopassive, lubricious brushes from large flat surfaces, as well as from various organic supports, including cellulose fibers and elastomers, using microliter volumes of reaction mixtures, and without the need for deoxygenation of reaction mixtures or an inert atmosphere. Thanks to a detailed analysis of its mechanism and the parameters governing the polymerization process, polymer brush growth by Cu0 SI-ATRP can be precisely modulated and adapted to be applied to morphologically and chemically different substrates, setting up the basis for translating SI-ATRP methods from academic studies into technologically relevant surface-modification approaches.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Marco Fantin
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Shivaprakash Ramakrishna
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Nicholas D Spencer
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Edmondo M Benetti
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
- Laboratory for Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5 , St. Gallen CH-9014 , Switzerland
| |
Collapse
|
29
|
Yan W, Fantin M, Spencer ND, Matyjaszewski K, Benetti EM. Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu 0-Mediated SI-ATRP under Environmental Conditions. ACS Macro Lett 2019; 8:865-870. [PMID: 35619512 DOI: 10.1021/acsmacrolett.9b00388] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exceptional features of Cu0-mediated surface-initiated atom transfer radical polymerization (Cu0 SI-ATRP), and its potential for implementation in technologically relevant surface functionalizations are demonstrated thanks to a comprehensive understanding of its mechanism. Cu0 SI-ATRP enables the synthesis of multifunctional polymer brushes with a remarkable degree of control, over extremely large areas and without the need for inert atmosphere or deoxygenation of monomer solutions. When a polymerization mixture is placed between a flat copper plate and an ATRP-initiator-functionalized substrate, the vertical distance between these two overlaying surfaces determines the tolerance of the grafting process toward the oxygen, while the composition of the polymerization solution emerges as the critical parameter regulating polymer-grafting kinetics. At very small distances between the copper plate and the initiating surfaces, the oxygen dissolved in the solution is rapidly consumed via oxidation of the metallic substrate. In the presence of ligand, copper species diffuse to the surface-immobilized initiators and trigger a rapid growth of polymer brushes. Concurrently, the presence and concentration of added CuII regulates the generation of CuI-based activators through comproportionation with Cu0. Hence, under oxygen-tolerant conditions, the extent of comproportionation, together with the solvent-dependent rate constant of activation (kact) of ATRP are the main determinants of the growth rate of polymer brushes.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas D. Spencer
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Edmondo M. Benetti
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
30
|
|