1
|
de Heer Kloots MHP, Schoustra SK, Dijksman JA, Smulders MMJ. Phase separation in supramolecular and covalent adaptable networks. SOFT MATTER 2023; 19:2857-2877. [PMID: 37060135 PMCID: PMC10131172 DOI: 10.1039/d3sm00047h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phase separation phenomena have been studied widely in the field of polymer science, and were recently also reported for dynamic polymer networks (DPNs). The mechanisms of phase separation in dynamic polymer networks are of particular interest as the reversible nature of the network can participate in the structuring of the micro- and macroscale domains. In this review, we highlight the underlying mechanisms of phase separation in dynamic polymer networks, distinguishing between supramolecular polymer networks and covalent adaptable networks (CANs). Also, we address the synergistic effects between phase separation and reversible bond exchange. We furthermore discuss the effects of phase separation on the material properties, and how this knowledge can be used to enhance and tune material properties.
Collapse
Affiliation(s)
- Martijn H P de Heer Kloots
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sybren K Schoustra
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
2
|
Marx F, Pal S, Sautaux J, Pallab N, Stoclet G, Weder C, Schrettl S. Plasticization of a Semicrystalline Metallosupramolecular Polymer Network. ACS POLYMERS AU 2022; 3:132-140. [PMID: 36785838 PMCID: PMC9912337 DOI: 10.1021/acspolymersau.2c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
The assembly of ligand-functionalized (macro)monomers with suitable metal ions affords metallosupramolecular polymers (MSPs). On account of the reversible and dynamic nature of the metal-ligand complexes, these materials can be temporarily (dis-)assembled upon exposure to a suitable stimulus, and this effect can be exploited to heal damaged samples, to facilitate processing and recycling, or to enable reversible adhesion. We here report on the plasticization of a semicrystalline, stimuli-responsive MSP network that was assembled by combining a low-molecular-weight building block carrying three 2,6-bis(1'-methylbenzimidazolyl) pyridine (Mebip) ligands and zinc bis(trifluoromethylsulfonyl)imide (Zn(NTf2)2). The pristine material exhibits high melting (T m = 230 °C) and glass transition (T g ≈ 157 °C) temperatures and offers robust mechanical properties between these temperatures. We show that this regime can be substantially extended through plasticization. To achieve this, the MSP network was blended with diisodecyl phthalate. The weight fraction of this plasticizer was systematically varied, and the thermal and mechanical properties of the resulting materials were investigated. We show that the T g can be lowered by more than 60 °C and the toughness above the T g is considerably increased.
Collapse
Affiliation(s)
- Franziska Marx
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Subhajit Pal
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Julien Sautaux
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Nazim Pallab
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Grégory Stoclet
- CNRS,
INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux
et Transformations, Univ. Lille, Lille F-59000, France
| | - Christoph Weder
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland,
| | - Stephen Schrettl
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland,TUM
School of Life Sciences, Technical University
of Munich, Maximus-von-Imhof-Forum 2, Freising 85354, Germany,
| |
Collapse
|
3
|
Klonos PA, Papadopoulos L, Kasimatis M, Iatrou H, Kyritsis A, Bikiaris DN. Synthesis, Crystallization, Structure Memory Effects, and Molecular Dynamics of Biobased and Renewable Poly( n-alkylene succinate)s with n from 2 to 10. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Maria Kasimatis
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| |
Collapse
|
4
|
Li X, Ni L, Sun C, Xu W, Zheng Y, Shan G, Bao Y, Pan P. Nucleobase-monofunctionalized supramolecular poly( l-lactide): controlled synthesis, competitive crystallization, and structural organization. Polym Chem 2021. [DOI: 10.1039/d1py00288k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Controlled synthesis, competitive crystallization, and crystallization-driven structural organization of thymine-monofunctionalized supramolecular poly(l-lactide).
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Lingling Ni
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Chenxuan Sun
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenqing Xu
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
5
|
Klonos PA, Kluge M, Robert T, Kyritsis A, Bikiaris DN. Molecular dynamics, crystallization and hydration study of Poly(Propylene succinate) based Poly(Ester amide)s. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|