1
|
Rationalizing the interfacial layer in polymer nanocomposites: Correlation between enthalpy and dielectric relaxation. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
2
|
Tarnacka M, Kamińska E, Paluch M, Kamiński K. New Insights from Nonequilibrium Kinetics Studies on Highly Polar S-Methoxy-PC Infiltrated into Pores. J Phys Chem Lett 2022; 13:10464-10470. [PMID: 36326602 PMCID: PMC9661534 DOI: 10.1021/acs.jpclett.2c02672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Herein, the annealing of highly polar (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (S-methoxy-PC) within alumina and silica porous membranes characterized by different pore diameters was studied by means of dielectric spectroscopy. We found a significant slowing down of the structural dynamics of confined S-methoxy-PC with annealing time below and, surprisingly, also above the glass transition temperatures of the interfacial layer, Tg,interfacial. Furthermore, unexpectedly, a change in the slope of temperature dependencies of the characteristic time scale of this process τanneal, at Tg,interfacial for all confined samples, was reported. By modeling τanneal(T), we noted that the observed enormous variation of τanneal results from a decrease of the pore radius due to the vitrification of the interfacial molecules. This indicates that the enhanced dynamics of confined materials upon cooling is mainly controlled by the interfacial molecules.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| | - Ewa Kamińska
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, Jagiellońska 4, 41-200Sosnowiec, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| | - Kamil Kamiński
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| |
Collapse
|
3
|
Wang X, Zhang C, Sawczyk M, Sun J, Yuan Q, Chen F, Mendes TC, Howlett PC, Fu C, Wang Y, Tan X, Searles DJ, Král P, Hawker CJ, Whittaker AK, Forsyth M. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. NATURE MATERIALS 2022; 21:1057-1065. [PMID: 35788569 DOI: 10.1038/s41563-022-01296-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm-2 and 1.0 mAh cm-2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm-2).
Collapse
Affiliation(s)
- Xiaoen Wang
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia.
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michal Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ju Sun
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Qinghong Yuan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, P. R. China
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Tiago C Mendes
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Patrick C Howlett
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences and Centre for Theoretical and Computational Molecular Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
- Departments of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Craig J Hawker
- Materials Research Laboratory, University of California Santa Barbara, CA, USA
- Materials Department, University of California Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA, USA
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Maria Forsyth
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
4
|
Kardasis P, Sakellariou G, Steinhart M, Floudas G. Non-equilibrium Effects of Polymer Dynamics under Nanometer Confinement: Effects of Architecture and Molar Mass. J Phys Chem B 2022; 126:5570-5581. [PMID: 35834553 DOI: 10.1021/acs.jpcb.2c03389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The non-equilibrium dynamics of linear and star-shaped cis-1,4 polyisoprenes confined within nanoporous alumina is explored as a function of pore size, d, molar mass, and functionality (f = 2, 6, and 64). Two thermal protocols are tested: one resembling a quasi-static process (I) and another involving fast cooling followed by annealing (II). Although both protocols give identical equilibrium times, it is through protocol I that it is easier to extract the equilibrium times, teq, by the linear relationships of the characteristic peak frequencies with time and rate, respectively, as log(fmax) = C1 - k log(t) and log(fmax) = C2 + λ log(β). Both thermal protocols establish the existence of a critical temperature (at Tc, where k → 0 and λ → 0) below which non-equilibrium effects set-in. The critical temperature depends on the degree of confinement, 2Rg/d, and on molecular architecture. Strikingly, establishing equilibrium dynamics at all temperatures above the bulk, Tg, requires 2Rg/d ∼ 0.02, i.e., pore diameters that are much larger than the chain dimensions. This reflects non-equilibrium configurations of the adsorbed layer that extent away from the pore walls. The equilibrium times depend strongly on temperature, pore size, and functionality. In general, star-shaped polymers require longer times to reach equilibrium because of the higher tendency for adsorption. Both thermal protocols produced an increasing dielectric strength for the segmental and chain modes. The increase was beyond any densification, suggesting enhanced orientation correlations of subchain dipoles.
Collapse
Affiliation(s)
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
5
|
Winkler R, Chat K, Unni AB, Dulski M, Laskowska M, Laskowski L, Adrjanowicz K. Glass Transition Dynamics of Poly(phenylmethylsiloxane) Confined within Alumina Nanopores with Different Atomic Layer Deposition (ALD) Coatings. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Aparna Beena Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Magdalena Laskowska
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Lukasz Laskowski
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
6
|
Song Z, White RP, Lipson JEG, Napolitano S. Experimental and Modeling Comparison of the Dynamics of Capped and Freestanding Poly(2-chlorostyrene) Films. ACS Macro Lett 2022; 11:91-95. [PMID: 35574787 DOI: 10.1021/acsmacrolett.1c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proximity to a nonrepulsive wall is commonly considered to cause slower dynamics, which should lead to greater relaxation times for capped thin polymer films than for bulk melts. To the contrary, here we demonstrate that Al-capped films of poly(2-chlorostyrene) exhibit enhanced dynamics with respect to the bulk, similar to analogous freestanding films. To quantitatively resolve the impact of interfaces on whole film dynamics, we analyzed the experimental data via the Cooperative Free Volume rate model. We found that the interfacial region adjacent to a cap contains an excess of free volume (relative to the bulk) about half of that proximate to a free surface. Employing a useful analogy between confinement and pressure effects, we estimated that the effect of capping an 18 nm freestanding film would be equivalent to applying a pressure increase of 19 MPa.
Collapse
Affiliation(s)
- Zijian Song
- Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Ronald P. White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Simone Napolitano
- Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
7
|
Winkler R, Tu W, Dulski M, Laskowski L, Adrjanowicz K. Effect of the Surface Polarity, Through Employing Nonpolar Spacer Groups, on the Glass-Transition Dynamics of Poly(phenyl methylsiloxane) Confined in Alumina Nanopores. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1a, Chorzow 41-500, Poland
| | - Lukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow 31-342, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
| |
Collapse
|
8
|
White RP, Lipson JEG. The dynamics of freestanding films: predictions for poly(2-chlorostyrene) based on bulk pressure dependence and thoughtful sample averaging. SOFT MATTER 2021; 17:9755-9764. [PMID: 34647951 DOI: 10.1039/d1sm01175h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper we model the segmental relaxation in poly(2-chlorostyrene) 18 nm freestanding films, using only data on bulk samples to characterize the system, and predict film relaxation times (τ) as a function of temperature that are in semi-quantitative agreement with film data. The ability to translate bulk characterization into film predictions is a direct result of our previous work connecting the effects of free surfaces in films with those of changing pressure in the bulk. Our approach combines the Locally Correlated Lattice (LCL) equation of state for prediction of free volume values (Vfree) at any given density (ρ), which are then used in the Cooperative Free Volume (CFV) rate model to predict τ(T, Vfree). A key feature of this work is that we calculate the locally averaged density profile as a function of distance from the surface, ρav(z), using the CFV-predicted lengthscale, Lcoop(z), over which rearranging molecular segments cooperate. As we have shown in the past, ρav(z) is significantly broader than the localized profile, ρ(z), which translates into a relaxation profile, τ(z), exhibiting a breadth that mirrors experimental and simulated results. In addition, we discuss the importance of averaging the log of position dependent relaxation times across a film sample (〈log τ(z)〉), as opposed to averaging the relaxation times, themselves, in order to best approximate a whole sample-averaged value that can be directly compared to experiment.
Collapse
Affiliation(s)
- Ronald P White
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
9
|
Chat K, Tu W, Beena Unni A, Adrjanowicz K. Influence of Tacticity on the Glass-Transition Dynamics of Poly(methyl methacrylate) (PMMA) under Elevated Pressure and Geometrical Nanoconfinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katarzyna Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Aparna Beena Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
10
|
Winkler R, Beena Unni A, Tu W, Chat K, Adrjanowicz K. On the Segmental Dynamics and the Glass Transition Behavior of Poly(2-vinylpyridine) in One- and Two-Dimensional Nanometric Confinement. J Phys Chem B 2021; 125:5991-6003. [PMID: 34048244 PMCID: PMC8279553 DOI: 10.1021/acs.jpcb.1c01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Indexed: 11/30/2022]
Abstract
Geometric nanoconfinement, in one and two dimensions, has a fundamental influence on the segmental dynamics of polymer glass-formers and can be markedly different from that observed in the bulk state. In this work, with the use of dielectric spectroscopy, we have investigated the glass transition behavior of poly(2-vinylpyridine) (P2VP) confined within alumina nanopores and prepared as a thin film supported on a silicon substrate. P2VP is known to exhibit strong, attractive interactions with confining surfaces due to the ability to form hydrogen bonds. Obtained results show no changes in the temperature evolution of the α-relaxation time in nanopores down to 20 nm size and 24 nm thin film. There is also no evidence of an out-of-equilibrium behavior observed for other glass-forming systems confined at the nanoscale. Nevertheless, in both cases, the confinement effect is seen as a substantial broadening of the α-relaxation time distribution. We discussed the results in terms of the importance of the interfacial energy between the polymer and various substrates, the sensitivity of the glass-transition temperature to density fluctuations, and the density scaling concept.
Collapse
Affiliation(s)
- Roksana Winkler
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Aparna Beena Unni
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
11
|
White RP, Lipson JEG. Dynamics across a Free Surface Reflect Interplay between Density and Cooperative Length: Application to Polystyrene. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronald P. White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
12
|
Tu W, Jurkiewicz K, Adrjanowicz K. Confinement of pyrrolidinium-based ionic liquids [CnMPyrr]+[Tf2N]− with long cationic alkyl side chains (n = 10 and 16) to nanoscale pores: Dielectric and calorimetric studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
El-Gamal S, Elsayed M. Synthesis, structural, thermal, mechanical, and nano-scale free volume properties of novel PbO/PVC/PMMA nanocomposites. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Kinsey T, Glynn K, Cosby T, Iacob C, Sangoro J. Ion Dynamics of Monomeric Ionic Liquids Polymerized In Situ within Silica Nanopores. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44325-44334. [PMID: 32886472 DOI: 10.1021/acsami.0c12381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymerized ionic liquids are a promising class of versatile solid-state electrolytes for applications ranging from electrochemical energy storage to flexible smart materials that remain limited by their relatively low ionic conductivities compared to conventional electrolytes. Here, we show that the in situ polymerization of the vinyl cationic monomer, 1-ethyl-3-vinylimidazolium with the bis(trifluoromethanesulfonyl)imide counteranion, under nanoconfinement within 7.5 ± 1.0 nm diameter nanopores results in a nearly 1000-fold enhancement in the ionic conductivity compared to the material polymerized in bulk. Using insights from broadband dielectric and Raman spectroscopic techniques, we attribute these results to the role of confinement on molecular conformations, ion coordination, and subsequently the ionic conductivity in the polymerized ionic liquid. These results contribute to the understanding of the dynamics of nanoconfined molecules and show that in situ polymerization under nanoscale geometric confinement is a promising path toward enhancing ion conductivity in polymer electrolytes.
Collapse
Affiliation(s)
- Thomas Kinsey
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| | - Kaitlin Glynn
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| | - Tyler Cosby
- Department of Chemistry, US Naval Academy, Annapolis, Maryland 21402, United States
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI Rm, Valcea, Romania 240050
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, Karlsruhe, Germany 76128
| | - Joshua Sangoro
- The Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37916, United States
| |
Collapse
|
15
|
Chat K, Tu W, Beena Unni A, Geppert-Rybczyńska M, Adrjanowicz K. Study on the glass transition dynamics and crystallization kinetics of molecular liquid, dimethyl phthalate, confined in Anodized Aluminum Oxide (AAO) nanopores with Atomic Layer Deposition (ALD) coatings. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Winkler R, Tu W, Laskowski L, Adrjanowicz K. Effect of Surface Chemistry on the Glass-Transition Dynamics of Poly(phenyl methyl siloxane) Confined in Alumina Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7553-7565. [PMID: 32515976 PMCID: PMC7588132 DOI: 10.1021/acs.langmuir.0c01194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) are combined to study the effect of changes in the surface chemistry on the segmental dynamics of glass-forming polymer, poly(methylphenylsiloxane) (PMPS), confined in anodized aluminum oxide (AAO) nanopores. Measurements were carried for native and silanized nanopores of the same pore sizes. Nanopore surfaces are modified with the use of two silanizing agents, chlorotrimethylsilane (ClTMS) and (3-aminopropyl)trimethoxysilane (APTMOS), of much different properties. The results of the dielectric studies have demonstrated that for the studied polymer located in 55 nm pores, changes in the surface chemistry and thermal treatment allows the confinement effect seen in temperature evolution of the segmental relaxation time, τα(T) to be removed. The bulk-like evolution of the segmental relaxation time can also be restored upon long-time annealing. Interestingly, the time scale of such equilibration process was found to be independent of the surface conditions. The calorimetric measurements reveal the presence of two glass-transition events in DSC thermograms of all considered systems, implying that the changes in the interfacial interactions introduced by silanization are not strong enough to inhibit the formation of the interfacial layer. Although DSC traces confirmed the two-glass-transition scenario, there is no clear evidence that vitrification of the interfacial layer affects τα(T) for nanopore-confined polymer.
Collapse
Affiliation(s)
- Roksana Winkler
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Lukasz Laskowski
- Institute
of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Karolina Adrjanowicz
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
17
|
Jasiurkowska-Delaporte M, Juszyńska-Gałązka E, Zieliński PM, Marzec M. Studies of molecular dynamics and non-isothermal crystallization process of 4-n-butyloxybenzylidene-4′-n'-octylaniline (BBOA) liquid crystal under two dimensional nano-confinement. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Tarnacka M, Mierzwa M, Kamińska E, Kamiński K, Paluch M. High-pressure experiments as a novel perspective to study the molecular dynamics of glass-forming materials confined at the nanoscale. NANOSCALE 2020; 12:10600-10608. [PMID: 32373895 DOI: 10.1039/d0nr02255a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report the pioneering high-pressure dielectric studies on the dynamics of a model van der Waals glass-forming liquid bisphenol-A diglycidyl ether (DGEBA) infiltrated into anodic aluminum oxide (AAO) templates of the mean pore sizes, d = 150 and d = 18 nm. It was found that although the shape of the structural relaxation process varies with the confinement, it remains constant under varying thermodynamic conditions for a given pore diameter. Consequently, the time-temperature-pressure (TTP) rule satisfied for the majority of bulk substances is also obeyed for the spatially restricted liquid. We have also shown for the first time that there is a decoupling between the core and interfacial mobility at elevated pressure. Moreover, it was noted that the structural dynamics of the former fraction of molecules becomes systematically shorter with respect to the bulk DGEBA during the compression. The enhanced structural dynamics of the core material, as well as the varying pressure coefficients of the glass transition temperature of the interfacial and core molecules, have been discussed in the context of a distinct evolution in their free volume/density packing with respect to the bulk DGEBA, and a change in the interfacial tension, which may lead to the enhanced wettability of the liquid adsorbed onto the pore walls under different thermodynamic conditions. The performed high-pressure measurements offer novel perspectives to explore the combination of two different effects, compression and confinement, which might be a breakthrough in the study of the glass transition phenomenon and the behavior of soft materials confined at the nanoscale.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzow, Poland.
| | | | | | | | | |
Collapse
|
19
|
Elmahdy MM, Gournis D, Ladavos A, Spanos C, Floudas G. H-Shaped Copolymer of Polyethylene and Poly(ethylene oxide) under Severe Confinement: Phase State and Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4261-4271. [PMID: 32243167 DOI: 10.1021/acs.langmuir.0c00127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly and the dynamics of an H-shaped copolymer composed of a polyethylene midblock and four poly(ethylene oxide) arms (PE-b-4PEO) are investigated in the bulk and under severe confinement into nanometer-spaced LAPONITE clay particles by means of small- and wide-angle X-ray diffraction (SAXS, WAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), rheology, and dielectric spectroscopy (DS). Because of the H-shaped architecture, the PE midblock is topologically frustrated and thus unable to crystallize. The superstructure formation in the bulk is dictated solely by the PEO arms as inferred by the crystallization/melting temperature relative to the PEO homopolymer. Confinement produced remarkable changes in the interlayer distance and PEO crystallinity but left the local segmental dynamics unaltered. To reconcile all structural, thermodynamic, and dynamic effects, a novel morphological picture is proposed with interest in emulsions. Key parameters that stabilize the final morphology are the severe chain confinement with the associated entropy loss and the presence of interactions (hydrophobic/hydrophilic) between the LAPONITE and the PEO/PE blocks.
Collapse
Affiliation(s)
- Mahdy M Elmahdy
- Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
- Department of Physics, University of Ioannina, 451 10 Ioannina, Greece
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 451 10 Ioannina, Greece
| | - Athanasios Ladavos
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece
| | - Christos Spanos
- Department of Business Administration of Food and Agricultural Enterprises, University of Patras, 30100 Agrinio, Greece
| | - George Floudas
- Department of Physics, University of Ioannina, 451 10 Ioannina, Greece
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 451 10 Ioannina, Greece
| |
Collapse
|
20
|
Kinsey T, Mapesa E, Cosby T, He Y, Hong K, Wang Y, Iacob C, Sangoro J. Elucidating the impact of extreme nanoscale confinement on segmental and chain dynamics of unentangled poly(cis-1,4-isoprene). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:137. [PMID: 31650417 DOI: 10.1140/epje/i2019-11907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Broadband dielectric spectroscopy is employed to probe dynamics in low molecular weight poly(cis-1,4-isoprene) (PI) confined in unidirectional silica nanopores with mean pore diameter, D, of 6.5 nm. Three molecular weights of PI (3, 7 and 10 kg/mol) were chosen such that the ratio of D to the polymer radius of gyration, Rg, is varied from 3.4, 2.3 to 1.9, respectively. It is found that the mean segmental relaxation rate remains bulk-like but an additional process arises at lower frequencies with increasing molecular weight (decreasing D/Rg. In contrast, the mean relaxation rates of the end-to-end dipole vector corresponding to chain dynamics are found to be slightly slower than that in the bulk for the systems approaching D/Rg ∼ 2, but faster than the bulk for the polymer with the largest molecular weight. The analysis of the spectral shapes of the chain relaxation suggests that the resulting dynamics of the 10kg/mol PI confined at length-scales close to that of the Rg are due to non-ideal chain conformations under confinement decreasing the chain relaxation times. The understanding of these faster chain dynamics of polymers under extreme geometrical confinement is necessary in designing nanodevices that contain polymeric materials within substrates approaching the molecular scale.
Collapse
Affiliation(s)
- Thomas Kinsey
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Emmanuel Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Tyler Cosby
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Youjun He
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Kunlun Hong
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Yangyang Wang
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI Rm. Valcea, Rm. Valcea, Romania
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, 76128, Karlsruhe, Germany
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA.
| |
Collapse
|
21
|
Kipnusu WK, Elsayed M, Iacob C, Pawlus S, Krause-Rehberg R, Paluch M. Glassy dynamics predicted by mutual role of free and activation volumes. SOFT MATTER 2019; 15:4656-4661. [PMID: 31149697 DOI: 10.1039/c9sm00363k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Broadband Dielectric Spectroscopy (BDS) at elevated pressures and Positron Annihilation Lifetime Spectroscopy (PALS) are employed to elucidate the importance of the ratio of activation and free volumes during vitrification. We show that this ratio has a linear correlation with the structural relaxation of glass forming liquids in a wide temperature range hence engendering it as a vital input in the description of the dynamic glass transition.
Collapse
Affiliation(s)
- Wycliffe K Kipnusu
- GROC UJI, Institute of New Imaging Technologies, Department of Physics, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Tarnacka M, Talik A, Kamińska E, Geppert-Rybczyńska M, Kaminski K, Paluch M. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice,School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | | | | | | |
Collapse
|