1
|
|
2
|
Podgórski M, Huang S, Bowman CN. Additive Manufacture of Dynamic Thiol-ene Networks Incorporating Anhydride-Derived Reversible Thioester Links. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12789-12796. [PMID: 33356106 DOI: 10.1021/acsami.0c18979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A photoprintable dynamic thiol-ene resin was developed based on commercially available anhydride, thiol, and ene monomers. The dynamic chemistry chosen for this study relied on the thermal reversibility of the in situ generated thioester-anhydride links. The resin's rheological and curing properties were optimized to enable 3D printing using the masked stereolithography (MSLA) technique. To achieve a desirable depth of cure of 200 μm, a combination of radical photoinitiator (BAPO) and inhibitor (pyrogallol) were used at a weight ratio of 0.5 to 0.05, resulting in more than 90% thiol-ene conversion within 12 s curing time. In a series of stress relaxation and creep experiments, the dynamic reversible exchange was characterized and yielded rapid exchange rates ranging from minutes to seconds at temperatures of 80-140 °C. Little to no exchange was observed at temperatures below 60 °C. Various 3D geometries were 3D printed, and the printed objects were shown to be reconfigurable above 80 °C and depolymerizable at or above 120 °C. By deactivation of the exchange catalyst (DMAP), the stimuli responsiveness was demonstrated to be erasable, allowing for a significant shift in the actuation threshold. These highly enabling features of the dynamic chemistry open up new possibilities in the field of shape memory and 4D printable functional materials.
Collapse
Affiliation(s)
- Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80303, United States
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 5, Lublin 20-031, Poland
| | - Sijia Huang
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80303, United States
| |
Collapse
|
3
|
Podgórski M, Fairbanks BD, Kirkpatrick BE, McBride M, Martinez A, Dobson A, Bongiardina NJ, Bowman CN. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906876. [PMID: 32057157 DOI: 10.1002/adma.201906876] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Indexed: 05/15/2023]
Abstract
Covalent adaptable networks (CANs), unlike typical thermosets or other covalently crosslinked networks, possess a unique, often dormant ability to activate one or more forms of stimuli-responsive, dynamic covalent chemistries as a means to transition their behavior from that of a viscoelastic solid to a material with fluid-like plastic flow. Upon application of a stimulus, such as light or other irradiation, temperature, or even a distinct chemical signal, the CAN responds by transforming to a state of temporal plasticity through activation of either reversible addition or reversible bond exchange, either of which allows the material to essentially re-equilibrate to an altered set of conditions that are distinct from those in which the original covalently crosslinked network is formed, often simultaneously enabling a new and distinct shape, function, and characteristics. As such, CANs span the divide between thermosets and thermoplastics, thus offering unprecedented possibilities for innovation in polymer and materials science. Without attempting to comprehensively review the literature, recent developments in CANs are discussed here with an emphasis on the most effective dynamic chemistries that render these materials to be stimuli responsive, enabling features that make CANs more broadly applicable.
Collapse
Affiliation(s)
- Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- Department of Polymer Chemistry, Faculty of Chemistry, Maria Curia-Sklodowska University, pl. Marii Curie-Sklodowskiej 5, Lublin, 20-031, Poland
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Bruce E Kirkpatrick
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew McBride
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Alina Martinez
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| | - Nicholas J Bongiardina
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, CO, 80309, USA
| |
Collapse
|
4
|
Yang Y, Song Q, Li C, Tan J, Xue Y, Su Z, Zhang G, Zhang Q. Reprocessable Epoxy Resins Based on Hydroxy-Thioester and Thiol-Thioester Dual Exchanges. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yumin Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Qingfei Song
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Jiaojun Tan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ying Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhengzhou Su
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
5
|
Sowan N, Dobson A, Podgorski M, Bowman CN. Dynamic covalent chemistry (DCC) in dental restorative materials: Implementation of a DCC-based adaptive interface (AI) at the resin-filler interface for improved performance. Dent Mater 2019; 36:53-59. [PMID: 31810600 DOI: 10.1016/j.dental.2019.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Dental restorative composites have been extensively studied with a goal to improve material performance. However, stress induced microcracks from polymerization shrinkage, thermal and other stresses along with the low fracture toughness of methacrylate-based composites remain significant problems. Herein, the study focuses on applying a dynamic covalent chemistry (DCC)-based adaptive interface to conventional BisGMA/TEGDMA (70:30) dental resins by coupling moieties capable of thiol-thioester (TTE) DCC to the resin-filler interface as a means to induce interfacial stress relaxation and promote interfacial healing. METHODS Silica nanoparticles (SNP) are functionalized with TTE-functionalized silanes to covalently bond the interface to the network while simultaneously facilitating relaxation of the filler-matrix interface via DCC. The functionalized particles were incorporated into the otherwise static conventional BisGMA/TEGDMA (70:30) dental resins. The role of interfacial bond exchange to enhance dental composite performance in response to shrinkage and other stresses, flexural modulus and toughness was investigated. Shrinkage stress was monitored with a tensometer coupled with FTIR spectroscopy. Flexural modulus/strength and flexural toughness were characterized in three-point bending on a universal testing machine. RESULTS A reduction of 30% in shrinkage stress was achieved when interfacial TTE bond exchange was activated while not only maintaining but also enhancing mechanical properties of the composite. These enhancements include a 60% increase in Young's modulus, 33% increase in flexural strength and 35% increase in the toughness, relative to composites unable to undergo DCC but otherwise identical in composition. Furthermore, by combining interfacial DCC with resin-based DCC, an 80% reduction of shrinkage-induced stress is observed in a thiol-ene system "equipped" with both types of DCC mechanisms relative to the composite without DCC in either the resin or at the resin-filler interface. SIGNIFICANCE This behavior highlights the advantages of utilizing the DCC at the resin-filler interface as a stress-relieving mechanism that is compatible with current and future developments in the field of dental restorative materials, nearly independent of the type of resin improvements and types that will be used, as it can dramatically enhance their mechanical performance by reducing both polymerization and mechanically applied stresses throughout the composite lifetime.
Collapse
Affiliation(s)
- Nancy Sowan
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA
| | - Maciej Podgorski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA; Department of Polymer Chemistry, Faculty of Chemistry, Maria Curia-Sklodowska University, Pl. Marii Curie-Sklodowskiej 5, 20-031 Lublin, Poland
| | - Christopher N Bowman
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA; Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|