1
|
Cui F, Zhang Y, Sui Y, Chen H, Helms BA, Yan J. Rewritable Surface-Grafted Polymer Brushes with Dynamic Covalent Linkages. Angew Chem Int Ed Engl 2024; 63:e202410862. [PMID: 39146247 DOI: 10.1002/anie.202410862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Surface grafting of polymer brushes drastically modifies surface properties, including wettability, compatibility, responsiveness, etc. A broad variety of functionalities can be introduced to the surface via different types of polymers. Bringing together properties of two or more types of polymer brushes to one surface opens up even more possibilities in brush-modified materials. However, while it is generally feasible to introduce several chemical compositions along the brushes via copolymerization, it is challenging to vary the types of polymer brushes along a surface. Although previous studies have demonstrated binary brushes via orthogonal polymerization techniques or partial deactivation/regrafting, they commonly limit the number of polymer types to two. Here, we propose a strategy to introduce dynamic covalent diketoenamine linkages at the root of polymer brushes. The grafting density could be precisely tuned during surface functionalization. The surface-anchored polymer brushes were cleaved by the addition of small molecule amines. New polymer brushes can be regrafted from the surface following refunctionalization of exposed sites. The maneuverability allows tuning of the types and densities of the polymer brushes, pointing the way to the preparation of a new generation of well-defined brush-modified materials with mixed grafts, with potential applications in the design of smart materials and surfaces.
Collapse
Affiliation(s)
- Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yipeng Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hongwen Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
2
|
Han X, Scialla S, Limiti E, Davis ET, Trombetta M, Rainer A, Jones SW, Mauri E, Zhang ZJ. Nanoscopic gel particle for intra-articular injection formulation. BIOMATERIALS ADVANCES 2024; 163:213956. [PMID: 39032433 DOI: 10.1016/j.bioadv.2024.213956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Hyaluronic acid (HA) based nanogels showed effective intracellular delivery efficacy for anti-cancer and anti-inflammatory drugs, characterized by their ability targeting relevant cell receptors. In the present study, we demonstrate the ability of hyaluronic acid-polyethyleneimine (HA-PEI) nanogels as a promising dual-functional interfacial active for intra-articular injection to intervene arthritis. Nanomechanical measurements on both model substrates and human cartilage samples confirm that the HA-PEI nanogels can significantly improve interfacial lubrication, in comparison to HA molecules, or silica-based nanoparticles. We show that the Coefficient of Friction significantly decreases with a decreasing nanogel size. The exceptional lubricating performance, coupled with the proven drug delivery capability, evidences the great potential of nanoscopic hydrogels for early-stage arthritis treatment. The flexibility in choosing the chemical nature, molecular architecture, and structural characteristics of nanogels makes it possible to modulate both drug delivery kinetics and interfacial lubrication, thus representing an innovative approach to treat degenerative joint diseases.
Collapse
Affiliation(s)
- Xiaoyu Han
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Stefano Scialla
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; National Institute of Chemical Physics and Biophysics - Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Emanuele Limiti
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, 73100 Lecce, Italy
| | - Edward T Davis
- Royal Orthopaedic Hospital, Bristol Road, Birmingham, B31 2AP, United Kingdom
| | - Marcella Trombetta
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Research Centre for Musculoskeletal Ageing Research, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Zhenyu J Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
3
|
Yin R, Tarnsangpradit J, Gul A, Jeong J, Hu X, Zhao Y, Wu H, Li Q, Fytas G, Karim A, Bockstaller MR, Matyjaszewski K. Organic nanoparticles with tunable size and rigidity by hyperbranching and cross-linking using microemulsion ATRP. Proc Natl Acad Sci U S A 2024; 121:e2406337121. [PMID: 38985759 PMCID: PMC11260123 DOI: 10.1073/pnas.2406337121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm-2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.
Collapse
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Jirameth Tarnsangpradit
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Akhtar Gul
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Yuqi Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Hanshu Wu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Qiqi Li
- Max Planck Institute for Polymer Research, Mainz55128, Germany
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion70013, Greece
| | - George Fytas
- Max Planck Institute for Polymer Research, Mainz55128, Germany
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion70013, Greece
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | | |
Collapse
|
4
|
Zhao Y, Wang Z, Hou G, Wu H, Fu L, Bockstaller MR, Qin X, Zhang L, Matyjaszewski K. Synthesis of Mechanically Robust Very High Molecular Weight Polyisoprene Particle Brushes by Atom Transfer Radical Polymerization. ACS Macro Lett 2024; 13:415-422. [PMID: 38526986 PMCID: PMC11025114 DOI: 10.1021/acsmacrolett.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Linear polyisoprene (PI) and SiO2-g-PI particle brushes were synthesized by both conventional and activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP). The morphology and solution state study on the particle brushes by transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the successful grafting of PI ligands on the silica surface. The presence of nanoparticle clusters suggests low grafting density (associated with the limited initiation efficiency of ARGET for PI). Nevertheless, particle brushes with very high molecular weights, Mn > 300,000, were prepared, which significantly improved the dispersion of silica nanoparticles and also contributed to excellent mechanical performance. The reinforcing effects of SiO2 nanofillers and very high molecular weight PI ligands were investigated by dynamic mechanical analysis (DMA) as well as computational simulation for the cured linear PI homopolymer/SiO2-g-PI particle brush bulk films.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Guanyi Hou
- College
of Chemistry and Materials Engineering, Beijing Technology and Business University, 33th Fucheng Road, Beijing 100048, China
| | - Hanshu Wu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liye Fu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xuan Qin
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liqun Zhang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Zhao Y, Wu H, Yin R, Matyjaszewski K, Bockstaller MR. The Importance of Bulk Viscoelastic Properties in "Self-Healing" of Acrylate-Based Copolymer Materials. ACS Macro Lett 2024; 13:1-7. [PMID: 38079594 PMCID: PMC10795469 DOI: 10.1021/acsmacrolett.3c00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
"Self-healing" has emerged as a concept to increase the functional stability and durability of polymer materials in applications and thus to benefit the sustainability of polymer-based technologies. Recently, van der Waals (vdW)-driven "self-healing" of sequence-controlled acrylate-based copolymers due to "key-and-lock"- or "ring-and-lock"-type interactions has generated considerable interest as a viable route toward engineering polymers with "self-healing" ability. This contribution systematically evaluates the time, temperature, and composition dependence of the mechanical recovery of acrylate-based copolymer and homopolymer systems subject to cut-and-adhere testing. "Self-healing" in n-butyl acrylate/methyl methacrylate (BA/MMA)- or n-butyl acrylate/styrene (BA/Sty)-based copolymers with varying composition and sequence is found to correlate with the bulk viscoelastic properties of materials and to follow a similar trend as other tested acrylate-based homo- and copolymers. This suggests that "self-healing" in this class of materials is more related to the chain dynamics of bulk materials rather than composition- or sequence-dependent specific interactions.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Takeuchi K, Sato R, Nogata Y, Kobayashi M. Measurement of the Adhesion Force of a Living Sessile Organism on Antifouling Coating Surfaces Prepared with Polysulfobetaine-Grafted Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38019926 DOI: 10.1021/acs.langmuir.3c02686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
An antifouling polymer brush-like structure was fabricated by a simple and versatile dip-coating method of sulfobetaine containing copolymer-grafted silica nanoparticles (SiNPs) and alkyl diiodide cross-linkers. Surface-initiated atom transfer radical copolymerization of 3-(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonatopropanesulfonate (MAPS) and N,N-dimethylaminoethyl methacrylate (DMAEMA) was carried out from initiator-immobilized SiNPs to give poly(MAPS-co-DMAEMA)-grafted SiNPs (MAPS/DMAEMA = 9/1, mol/mol) with diameters of 150-170 nm. The SiNP-g-copolymer/2,2,2-trifluoroethanol solution was dip-coated on silicon and glass substrates. Successive treatment with 1,4-diiodobutane in methanol gave a hydrophilic cross-linked coating film for the SiNP-g-copolymer. The cross-linked particle brushes did not peel off from the substrate even after washing with water in an ultrasonic cleaner despite the simple physical absorption of the SiNP-g-copolymer on the substrate surface. The adhesion force of the tentacle of a living barnacle cyprid on a glass surface covered with the cross-linked SiNP-g-copolymer was directly measured by scanning probe microscopy in seawater. The coating film exhibited extremely low adhesion to the cypris larva in the seawater, expecting this to be an effective antifouling property.
Collapse
Affiliation(s)
- Kanae Takeuchi
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Ryota Sato
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Yasuyuki Nogata
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
7
|
Cang Y, Sainidou R, Rembert P, Matyjaszewski K, Bockstaller M, Graczykowski B, Fytas G. Architecture Controls Phonon Propagation in All-Solid Brush Colloid Metamaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304157. [PMID: 37972268 DOI: 10.1002/smll.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Brillouin light scattering and elastodynamic theory are concurrently used to determine and interpret the hypersonic phonon dispersion relations in brush particle solids as a function of the grafting density with perspectives in optomechanics, heat management, and materials metrology. In the limit of sparse grafting density, the phonon dispersion relations bear similarity to polymer-embedded colloidal assembly structures in which phonon dispersion can be rationalized on the basis of perfect boundary conditions, i.e., isotropic stiffness transitions across the particle interface. In contrast, for dense brush assemblies, more complex dispersion characteristics are observed that imply anisotropic stiffness transition across the particle/polymer interface. This provides direct experimental validation of phonon propagation changes associated with chain conformational transitions in dense particle brush materials. A scaling relation between interface tangential stiffness and crowding of polymer tethers is derived that provides a guideline for chemists to design brush particle materials with tailored phononic dispersion characteristics. The results emphasize the role of interfaces in composite materials systems. Given the fundamental relevance of phonon dispersion to material properties such as thermal transport or mechanical properties, it is also envisioned that the results will spur the development of novel functional hybrid materials.
Collapse
Affiliation(s)
- Yu Cang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Rebecca Sainidou
- Laboratoire Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, Le Havre, F-76600, France
| | - Pascal Rembert
- Laboratoire Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, Le Havre, F-76600, France
| | - Krzysztof Matyjaszewski
- Chemistry Department, Carnegie Mellon University, 4400 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Michael Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Electronic Structure and Laser, FORTH, N. Plastira 100, Heraklion, 70013, Greece
| |
Collapse
|
8
|
Zhao Y, Wu H, Yin R, Yu C, Matyjaszewski K, Bockstaller MR. Copolymer Brush Particle Hybrid Materials with "Recall-and-Repair" Capability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6990-6997. [PMID: 37719032 PMCID: PMC10501442 DOI: 10.1021/acs.chemmater.3c01234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Indexed: 09/19/2023]
Abstract
The effect of sequence structure on the self-healing and shape-memory properties of copolymer-tethered brush particle films was investigated and compared to linear copolymer analogs. Poly(n-butyl acrylate-co-methyl methacrylate), P(BA-co-MMA), and linear and brush analogs with controlled gradient and statistical sequence were synthesized by atom transfer radical polymerization (ATRP). The effect of sequence on self-healing in BA/MMA copolymer brush particle hybrids followed similar trends as for linear analogs. Most rapid restoration of mechanical properties was found for statistical copolymer sequence; an increase of the high Tg (MMA) component provided a path to raise the material's modulus while retaining self-heal ability. Creep testing revealed profound differences between linear and brush systems. While linear copolymers featured substantial viscous deformation when exposed to constant stress in the linear regime, brush analogs displayed minimal permanent deformation and featured shape restoration. The reduction of flow was interpreted to be a consequence of slow cooperative relaxation due to the complex microstructure of brush particle hybrids in which long-range motions are constrained through entanglements and slow-diffusing particle cores. The rubbery-like response imparts BA/MMA copolymer brush material systems concurrent "shape-memory" and "self-heal" capability. This ability to "recall-and-repair" could find application in the design of functional hybrid materials, for example, for soft robotics.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chenxi Yu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Zhao Y, Yin R, Wu H, Wang Z, Zhai Y, Kim K, Do C, Matyjaszewski K, Bockstaller MR. Sequence-Enhanced Self-Healing in “Lock-and-Key” Copolymers. ACS Macro Lett 2023; 12:475-480. [PMID: 36971570 PMCID: PMC10116642 DOI: 10.1021/acsmacrolett.3c00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Van der Waals-driven self-healing in copolymers with "lock-and-key" architecture has emerged as a concept to endow engineering-type polymers with the capacity to recover from structural damage. Complicating the realization of "lock-and-key"-enabled self-healing is the tendency of copolymers to form nonuniform sequence distributions during polymerization reactions. This limits favorable site interactions and renders the evaluation of van der Waals-driven healing difficult. Here, methods for the synthesis of lock-and-key copolymers with prescribed sequence were used to overcome this limitation and enable the deliberate synthesis of "lock-and-key" architectures most conducive to self-healing. The effect of molecular sequence on the material's recovery behavior was evaluated for the particular case of three poly(n-butyl acrylate/methyl methacrylate) [P(BA/MMA)] copolymers with similar molecular weights, dispersity, and overall composition but with different sequences: alternating (alt), statistical (stat), and gradient (grad). They were synthesized using atom transfer radical polymerization (ATRP). Copolymers with alt and stat sequence displayed a 10-fold increase of recovery rate compared to the grad copolymer variant despite a similar overall glass transition temperature. Investigation with small-angle neutron scattering (SANS) revealed that rapid property recovery is contingent on a uniform microstructure of copolymers in the solid state, thus avoiding the pinning of chains in glassy MMA-rich cluster regions. The results delineate strategies for the deliberate design and synthesis of engineering polymers that combine structural and thermal stability with the ability to recover from structural damage.
Collapse
|
10
|
Phukan M, Haritha P, Roy TR, Iyer BVS. Mechanical response of networks formed by end-functionalised spherical polymer grafted nanoparticles. SOFT MATTER 2022; 18:8591-8604. [PMID: 36325950 DOI: 10.1039/d2sm01174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Via computer simulations we examine the mechanical response of hybrid polymer-particle networks composed of rigid spherical nanoparticles with long flexible polymer chains grafted onto their surface. The canopy of grafted polymer arms are end-functionalised such that interacting polymer-grafted nanoparticles (PGNs) form labile bonds when their coronas overlap. In the present study, the number of grafted arms, f, are such that the PGN brushes are in the small (f = 600) and intermediate curvature (f = 900 and 1200) regime with stable bonded interactions. To investigate the mechanical response of networks formed by these PGNs, controlled uniaxial elongation at a specified pulling rate is imposed on a 2-D network of PGNs placed on a hexagonal lattice. In the simulations, the force required to deform the network is measured as a function of the elongation and pulling rate imposed on the network until the network fails. By analysis of the force-strain curves and the rearrangement of the PGNs in the network we show that an increase in the number of grafted arms, pulling velocity and energy of the bonded interactions alters both the toughness and the mode of failure of the networks. In particular, we show that an increase in the number of grafted arms results in a reduction of toughness. Furthermore, analysis of the simulations of force relaxation after rapid extension indicates that the relaxation in deformed networks can be characterised by one or two time scales that depend on the number of grafted arms. The analysis of force-strain curves and force relaxation demonstrate the role of Deborah number, De, and the limitations in the use of a unique De in understanding the mechanical response of the networks respectively.
Collapse
Affiliation(s)
- Monmee Phukan
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| | - Pindi Haritha
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| | - Talem Rebeda Roy
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| | - Balaji V S Iyer
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| |
Collapse
|
11
|
Yoshioka H, Aoki Y, Nonaka K, Yamada NL, Kobayashi M. Effect of molecular weight distribution on the thermal adhesion of polystyrene and PMMA brushes. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Iyer BVS. Effect of functional anisotropy on the local dynamics of polymer grafted nanoparticles. SOFT MATTER 2022; 18:6209-6221. [PMID: 35894123 DOI: 10.1039/d2sm00710j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
End-functionalised polymer grafted nanoparticles (PGNs) form bonds when their coronas overlap. The bonded interactions between the overlapping PGNs depend on the energy of the bonds (U). In the present study, oscillatory deformation imposed on a simple system with interacting PGNs placed on the vertices of a triangle is employed to examine the local dynamics as a function of energy of the bonds and the frequency of oscillation relative to the characteristic rupture frequency, ω0 = 2πν exp(-U/kBT), of the bonds. In particular, the effect of functional anisotropy is studied by introducing bonds of two different energies between adjacent PGNs. A multicomponent model developed by Kadre and Iyer, Macromol. Theory Simul., 2021, 30, 2100005, that combines the features of effective interactions between PGNs, self-consistent field theory and master equation approach to study bond kinetics is employed to obtain the local dynamics. The resulting force-strain curves are found to exhibit a simple broken symmetry where Fx (γ,) ≠ -Fx (-γ,-) and Fy (γ,) ≠ Fy (-γ,-) in systems with functional anisotropy. Fourier analysis of the dynamic response reveals that functional anisotropy leads to finite even harmonic terms and systematic variation of both the elastic and dissipative response from that of the isotropic systems. Furthermore, the intra-cycle variations in the strain stiffening and shear thickening ratios obtained from the analysis indicate that functional anisotropy leads to anisotropic nonlinear response.
Collapse
Affiliation(s)
- Balaji V S Iyer
- Department of Chemical Engineering, IIT Hyderabad, Hyderabad, India.
| |
Collapse
|
13
|
Plunkett A, Kampferbeck M, Bor B, Sazama U, Krekeler T, Bekaert L, Noei H, Giuntini D, Fröba M, Stierle A, Weller H, Vossmeyer T, Schneider GA, Domènech B. Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity. ACS NANO 2022; 16:11692-11707. [PMID: 35760395 PMCID: PMC9413410 DOI: 10.1021/acsnano.2c01332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.
Collapse
Affiliation(s)
- Alexander Plunkett
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Michael Kampferbeck
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Büsra Bor
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Uta Sazama
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Tobias Krekeler
- Electron
Microscopy Unit, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Lieven Bekaert
- Research
Group of Electrochemical and Surface Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Heshmat Noei
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Diletta Giuntini
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
- Department
of Mechanical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michael Fröba
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Andreas Stierle
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Fachbreich
Physik, University of Hamburg, 20355 Hamburg, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Fraunhofer-CAN, 20146 Hamburg, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Gerold A. Schneider
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Berta Domènech
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| |
Collapse
|
14
|
Matrix free polymer nanocomposites from amphiphilic hairy nanoparticles: Solvent selectivity and mechanical properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Zhao Y, Wang Z, Yu C, Wu H, Olszewski M, Yin R, Zhai Y, Liu T, Coronado A, Matyjaszewski K, Bockstaller MR. Topologically Induced Heterogeneity in Gradient Copolymer Brush Particle Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chenxi Yu
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yue Zhai
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Amy Coronado
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Yin R, Chmielarz P, Zaborniak I, Zhao Y, Szczepaniak G, Wang Z, Liu T, Wang Y, Sun M, Wu H, Tarnsangpradit J, Bockstaller MR, Matyjaszewski K. Miniemulsion SI-ATRP by Interfacial and Ion-Pair Catalysis for the Synthesis of Nanoparticle Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Paweł Chmielarz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Izabela Zaborniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jirameth Tarnsangpradit
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Jhalaria M, Cang Y, Huang Y, Benicewicz B, Kumar SK, Fytas G. Unusual High-Frequency Mechanical Properties of Polymer-Grafted Nanoparticle Melts. PHYSICAL REVIEW LETTERS 2022; 128:187801. [PMID: 35594089 DOI: 10.1103/physrevlett.128.187801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Brillouin light spectroscopy is used to measure the elastic moduli of spherical polymer-grafted nanoparticle (GNP) melts as a function of chain length at fixed grafting density (0.47 chains/nm^{2}) and nanoparticle radius (8 nm). While the moduli follow a rule of mixtures (Wood's law) for long chains, they display enhanced elasticity and anomalous dissipation for graft chains <100 kDa. GNP melts with long polymers at high σ have a dry zone near the GNP core, surrounded by a region where the grafts can interpenetrate with chain fragments from adjacent GNPs. We propose that the departures from Wood's law for short chains are due to the effectively larger silica volume fraction in the region where sound propagates-this is caused by the short, interpenetrated chain fragments being pushed out of the way. We thus conclude that transport mechanisms (of gas, ions, sound, thermal phonons) in GNP melts are radically different if interpenetrated chain segments can be "pushed out of the way" or not. This provides a facile new means for manipulating the properties of these materials.
Collapse
Affiliation(s)
- Mayank Jhalaria
- Department of Chemical Engineering, Columbia University, New York 10027, New York, USA
| | - Yu Cang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 100 Zhangwu Road, Shanghai 200092, China
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29201, South Carolina, USA
| | - Brian Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29201, South Carolina, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York 10027, New York, USA
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Chen SH, Souna AJ, Stranick SJ, Jhalaria M, Kumar SK, Soles CL, Chan EP. Controlling toughness of polymer-grafted nanoparticle composites for impact mitigation. SOFT MATTER 2022; 18:256-261. [PMID: 34931215 DOI: 10.1039/d1sm01432c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toughness in an entangled polymer network is typically controlled by the number of load-bearing topological constraints per unit volume. In this work, we demonstrate a new paradigm for controlling toughness at high deformation rates in a polymer-grafted nanoparticle composite system where the entanglement density increases with the molecular mass of the graft. An unexpected peak in the toughness is observed right before the system reaches full entanglement that cannot be described through the entanglement concept alone. Quasi-elastic neutron scattering reveals enhanced segmental fluctuations of the grafts on the picosecond time scale, which propagate out to nanoparticle fluctuations on the time scale 100s of seconds as evidenced by X-ray photon correlation spectroscopy. This surprising multi-scale dissipation process suggests a nanoparticle jamming-unjamming transition. The realization that segmental dynamics can be coupled with the entanglement concept for enhanced toughness at high rates of deformation is a novel insight with relevance to the design of composite materials.
Collapse
Affiliation(s)
- Shawn H Chen
- Materials Measurement Sciences Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - Amanda J Souna
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA.
| | - Stephan J Stranick
- Materials Measurement Sciences Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - Mayank Jhalaria
- Department of Chemical Engineering, Columbia University, 801 SW Mudd, New York, NY 10027, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, 801 SW Mudd, New York, NY 10027, USA
| | - Christopher L Soles
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA.
| | - Edwin P Chan
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA.
| |
Collapse
|
19
|
Romio M, Grob B, Trachsel L, Mattarei A, Morgese G, Ramakrishna SN, Niccolai F, Guazzelli E, Paradisi C, Martinelli E, Spencer ND, Benetti EM. Dispersity within Brushes Plays a Major Role in Determining Their Interfacial Properties: The Case of Oligoxazoline-Based Graft Polymers. J Am Chem Soc 2021; 143:19067-19077. [PMID: 34738797 PMCID: PMC8769490 DOI: 10.1021/jacs.1c08383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.
Collapse
Affiliation(s)
- Matteo Romio
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Lucca Trachsel
- George
& Josephine Butler Polymer Research Laboratory, Department of
Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Andrea Mattarei
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giulia Morgese
- Institute
of Materials and Process Engineering (IMPE), School of Engineering
(SoE), Zürich University of Applied
Sciences (ZHAW), Technikumstrasse 9, 8401 Winterthur, Switzerland
| | - Shivaprakash N. Ramakrishna
- Soft Materials
and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, 8093 Zürich, Switzerland
| | - Francesca Niccolai
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elisa Guazzelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Cristina Paradisi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Elisa Martinelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| |
Collapse
|
20
|
Jhalaria M, Huang Y, Ruzicka E, Tyagi M, Zorn R, Zamponi M, García Sakai V, Benicewicz B, Kumar S. Activated Transport in Polymer Grafted Nanoparticle Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mayank Jhalaria
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Eric Ruzicka
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Reiner Zorn
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1 85748 Garching, Germany
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK
| | - Brian Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sanat Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
21
|
|
22
|
Kadre D, Iyer BVS. Modeling Local Oscillatory Shear Dynamics of Functionalized Polymer Grafted Nanoparticles. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diksha Kadre
- Department of Chemical Engineering Indian Institute of Technology Hyderabad 502285 India
| | - Balaji V. S. Iyer
- Department of Chemical Engineering Indian Institute of Technology Hyderabad 502285 India
| |
Collapse
|
23
|
Li SJ, Shi X. Tailoring Antifouling Properties of Nanocarriers via Entropic Collision of Polymer Grafting. ACS NANO 2021; 15:5725-5734. [PMID: 33710849 DOI: 10.1021/acsnano.1c01173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer graftings (PGs) are widely employed in antifouling surfaces and drug delivery systems to regulate the interaction with a foreign environment. Through molecular dynamics simulations and scaling theory analysis, we investigate the physical antifouling properties of PGs via their collision behaviors. Compared with mushroom-like PGs with low grafting density, we find brush-like PGs with high grafting density could generate large deformation-induced entropic repulsive force during a collision, revealing a microscopic mechanism for the hop motions of polymer-grafted nanoparticles for drug delivery observed in experiment. In addition, the collision elasticity of PGs is found to decay with the collision velocity by a power law, i.e., a concise dynamic scaling despite the complex process involved, which is beyond expectation. These results elucidate the dynamic interacting mechanism of PGs, which are of immediate interest for a fundamental understanding of the antifouling performance of PGs and the rational design of PG-coated nanoparticles in nanomedicine for drug delivery.
Collapse
Affiliation(s)
- Shu-Jia Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
24
|
Cang Y, Lee J, Wang Z, Yan J, Matyjaszewski K, Bockstaller MR, Fytas G. Transparent Hybrid Opals with Unexpected Strong Resonance-Enhanced Photothermal Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004732. [PMID: 33251706 PMCID: PMC11468544 DOI: 10.1002/adma.202004732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/12/2020] [Indexed: 05/24/2023]
Abstract
Photothermal energy conversion is of fundamental importance to applications ranging from drug delivery to microfluidics and from ablation to fabrication. It typically originates from absorptive processes in materials that-when coupled with non-radiative dissipative processes-allow the conversion of radiative energy into heat. Microstructure design provides versatile strategies for controlling light-matter interactions. In particular, the deliberate engineering of the band structure in photonic materials is known to be an effective approach to amplify absorption in materials. However, photonic amplification is generally tied to high optical contrast materials which limit the applicability of the concept to metamaterials such as microfabricated metal-air hybrids. This contribution describes the first observation of pronounced amplification of absorption in low contrast opals formed by the self-assembly of polymer-tethered particles. The dependence of the amplification factor on the length scale and degree of order of materials as well as the angle of incidence reveal that it is related to the slow photon effect. A remarkable amplification factor of 16 is shown to facilitate the rapid "melting" of opal films even in the absence of "visible" absorption. The results point to novel opportunities for tailoring light-matter interactions in hybrid materials that can benefit the manipulation and fabrication of functional materials.
Collapse
Affiliation(s)
- Yu Cang
- School of Aerospace Engineering and Applied MechanicsTongji University100 Zhangwu RoadShanghai200092China
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jaejun Lee
- Department of Materials Science and EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Zuyuan Wang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jiajun Yan
- Chemistry DepartmentCarnegie Mellon University4400 Fifth Ave.PittsburghPA15213USA
| | | | - Michael R. Bockstaller
- Department of Materials Science and EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - George Fytas
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
25
|
Zhu T, Rahman MA, Benicewicz BC. Synthesis of Well-Defined Polyolefin Grafted SiO 2 Nanoparticles with Molecular Weight and Graft Density Control. ACS Macro Lett 2020; 9:1255-1260. [PMID: 35638619 DOI: 10.1021/acsmacrolett.0c00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent advances in surface-initiated polymerization have given rise to a range of brush nanocomposites and hybrid functional materials. However, the synthesis of pure polyolefin-grafted nanocomposites by surface-initiated ring-opening metathesis polymerization (SI-ROMP) is a significant challenge due to the particle aggregation and irreversible particle coupling. This study presents a synthetic approach toward well-defined poly(cyclooctene)- and polyethylene-grafted nanoparticles by tethering Grubbs third generation catalyst on the particle surface and initiating the polymerization in a rapid manner. This work also serves as a template to prepare other hairy nanoparticles and functions as a basis toward understanding their thermomechanical behaviors.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Anisur Rahman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
26
|
Han J, Zhai Y, Wang Z, Bleuel M, Liu T, Yin R, Wu W, Hakem IF, Karim A, Matyjaszewski K, Bockstaller MR. Nanosized Organo-Silica Particles with "Built-In" Surface-Initiated Atom Transfer Radical Polymerization Capability as a Platform for Brush Particle Synthesis. ACS Macro Lett 2020; 9:1218-1223. [PMID: 35638636 DOI: 10.1021/acsmacrolett.0c00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile synthetic method was developed to prepare sub-5 nm organo-silica (oSiO2) nanoparticles through the self-condensation of atom transfer radical polymerization (ATRP)-initiator-containing silica precursors. The obtained oSiO2 nanoparticles were characterized by a combination of nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The accessibility of the surface-Br initiating sites was evaluated by the polymerization of poly(methyl methacrylate) (PMMA) ligands from the surface of the oSiO2 nanoparticles using surface-initiated atom transfer radical polymerization (SI-ATRP). The ultrasmall size, tunable composition, and ease of surface modification may render these organo-silica nanoparticle systems with built-in SI-ATRP capability an interesting alternative to conventional silica nanoparticles for functional material design.
Collapse
Affiliation(s)
- Jin Han
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People’s Republic of China
| | - Yue Zhai
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20988-8562, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ilhem F. Hakem
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
27
|
Wang Z, Lee J, Wang Z, Zhao Y, Yan J, Lin Y, Li S, Liu T, Olszewski M, Pietrasik J, Bockstaller MR, Matyjaszewski K. Tunable Assembly of Block Copolymer Tethered Particle Brushes by Surface-Initiated Atom Transfer Radical Polymerization. ACS Macro Lett 2020; 9:806-812. [PMID: 35648530 DOI: 10.1021/acsmacrolett.0c00158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A strategy to synthesize SiO2-g-PMMA/PMMA-b-PS mono- and bimodal block copolymer particle brushes by surface-initiated atom transfer radical polymerization (SI-ATRP) from silica particles is presented. First, PMMA blocks were prepared by normal ATRP with controlled degree of polymerizations and grafting density. In a second step, the PS block was synthesized through a chain extension using low parts per million of Cu catalyst. Variation of the SiO2-g-PMMA-Br macroinitiator concentration had a pronounced effect on the modality of the chain extension product. In the limit of small concentration, partial termination resulted in bimodal brush architectures, while more uniform brush architectures were observed with increasing concentration of macroinitiator. Brush nanoparticles with bimodal architectures assembled into string-like aggregates that bore a resemblance to structures found in systems comprised of sparse (homopolymer) brush particles. The unexpected effect of modality on structure formation points to opportunities in controlling microstructures in brush particle materials.
Collapse
Affiliation(s)
- Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jaejun Lee
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zhenhua Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yu Lin
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sipei Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology, Technical University of Lodz, Stefanowskiego 12/16, 90 924 Lodz, Poland
| | - Michael R Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|