1
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Connor L Witt
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - James J Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Gregory N Tew
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
2
|
Sánchez-Leija R, Mysona JA, de Pablo JJ, Nealey PF. Phase Behavior and Conformational Asymmetry near the Comb-to-Bottlebrush Transition in Linear-Brush Block Copolymers. Macromolecules 2024; 57:2019-2029. [PMID: 38495384 PMCID: PMC10938885 DOI: 10.1021/acs.macromol.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
This study explores how conformational asymmetry influences the bulk phase behavior of linear-brush block copolymers. We synthesized 60 diblock copolymers composed of poly(trifluoroethyl methacrylate) as the linear block and poly[oligo(ethylene glycol) methyl ether methacrylate] as the brush block, varying the molecular weight, composition, and side-chain length to introduce different degrees of conformational asymmetry. Using small-angle X-ray scattering, we determined the morphology and phase diagrams for three different side-chain length systems, mainly observing lamellar and cylindrical phases. Increasing the side-chain length of the brush block from three to nine ethylene oxide units introduces sufficient asymmetry between the blocks to alter the phase behavior, shifting the lamellar-to-cylindrical transitions toward lower brush block compositions and transitioning the brush block from the dense comb-like regime to the bottlebrush regime. Coarse-grained simulations support our experimental observations and provide a mapping between the composition and conformational asymmetry. A comparison of our findings to strong stretching theory across multiple phase boundary predictions confirms the transition between the dense comb-like regime and the bottlebrush regime.
Collapse
Affiliation(s)
- Regina
J. Sánchez-Leija
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Joshua A. Mysona
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Jeon S, Kamble YL, Kang H, Shi J, Wade MA, Patel BB, Pan T, Rogers SA, Sing CE, Guironnet D, Diao Y. Direct-ink-write cross-linkable bottlebrush block copolymers for on-the-fly control of structural color. Proc Natl Acad Sci U S A 2024; 121:e2313617121. [PMID: 38377215 PMCID: PMC10907314 DOI: 10.1073/pnas.2313617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.
Collapse
Affiliation(s)
- Sanghyun Jeon
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Haisu Kang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jiachun Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Matthew A. Wade
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Tianyuan Pan
- Department Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Molecular Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
4
|
Lebedeva IO, Zhulina EB, Borisov OV. Polymorphism of self-assembled colloidal nanostructures of comblike and bottlebrush block copolymers. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Husted KL, Herzog-Arbeitman A, Kleinschmidt D, Zhang W, Sun Z, Fielitz AJ, Le AN, Zhong M, Johnson JA. Pendant Group Modifications Provide Graft Copolymer Silicones with Exceptionally Broad Thermomechanical Properties. ACS CENTRAL SCIENCE 2023; 9:36-47. [PMID: 36712487 PMCID: PMC9881205 DOI: 10.1021/acscentsci.2c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/18/2023]
Abstract
Graft copolymers offer a versatile platform for the design of self-assembling materials; however, simple strategies for precisely and independently controlling the thermomechanical and morphological properties of graft copolymers remain elusive. Here, using a library of 92 polynorbornene-graft-polydimethylsiloxane (PDMS) copolymers, we discover a versatile backbone-pendant sequence-control strategy that addresses this challenge. Small structural variations of pendant groups, e.g., cyclohexyl versus n-hexyl, of small-molecule comonomers have dramatic impacts on order-to-disorder transitions, glass transitions, mechanical properties, and morphologies of statistical and block silicone-based graft copolymers, providing an exceptionally broad palette of designable materials properties. For example, statistical graft copolymers with high PDMS volume fractions yielded unbridged body-centered cubic morphologies that behaved as soft plastic crystals. By contrast, lamellae-forming graft copolymers provided robust, yet reprocessable silicone thermoplastics (TPs) with transition temperatures spanning over 160 °C and elastic moduli as high as 150 MPa despite being both unentangled and un-cross-linked. Altogether, this study reveals a new pendant-group-mediated self-assembly strategy that simplifies graft copolymer synthesis and enables access to a diverse family of silicone-based materials, setting the stage for the broader development of self-assembling materials with tailored performance specifications.
Collapse
Affiliation(s)
- Keith
E. L. Husted
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Abraham Herzog-Arbeitman
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Zehao Sun
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alyssa J. Fielitz
- Core
R&D, Analytical Science, The Dow Chemical
Company, Midland, Michigan 48640, United States
| | - An N. Le
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jeremiah A. Johnson
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Zhulina EB, Sheiko SS, Borisov OV. Theoretical advances in molecular bottlebrushes and comblike (co)polymers: solutions, gels, and self-assembly. SOFT MATTER 2022; 18:8714-8732. [PMID: 36373559 DOI: 10.1039/d2sm01141g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei S Sheiko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
7
|
Dashtimoghadam E, Maw M, Keith AN, Vashahi F, Kempkes V, Gordievskaya YD, Kramarenko EY, Bersenev EA, Nikitina EA, Ivanov DA, Tian Y, Dobrynin AV, Vatankhah-Varnosfaderani M, Sheiko SS. Super-soft, firm, and strong elastomers toward replication of tissue viscoelastic response. MATERIALS HORIZONS 2022; 9:3022-3030. [PMID: 36128881 DOI: 10.1039/d2mh00844k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polymeric networks are commonly used for various biomedical applications, from reconstructive surgery to wearable electronics. Some materials may be soft, firm, strong, or damping however, implementing all four properties into a single material to replicate the mechanical properties of tissue has been inaccessible. Herein, we present the A-g-B brush-like graft copolymer platform as a framework for fabrication of materials with independently tunable softness and firmness, capable of reaching a strength of ∼10 MPa on par with stress-supporting tissues such as blood vessel, muscle, and skin. These properties are maintained by architectural control, therefore diverse mechanical phenotypes are attainable for a variety of different chemistries. Utilizing this attribute, we demonstrate the capability of the A-g-B platform to enhance specific characteristics such as tackiness, damping, and moldability.
Collapse
Affiliation(s)
- Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| | - Mitchell Maw
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| | - Andrew N Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| | - Foad Vashahi
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| | - Verena Kempkes
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| | - Yulia D Gordievskaya
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Elena Yu Kramarenko
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Egor A Bersenev
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Evgeniia A Nikitina
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
| | - Dimitri A Ivanov
- Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russian Federation
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, 15, rue Jean Starcky, F-68057 Mulhouse, France.
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russian Federation
| | - Yuan Tian
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| | - Andrey V Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| | | | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
8
|
Chen D, Quah T, Delaney KT, Fredrickson GH. Investigation of the Self-Assembly Behavior of Statistical Bottlebrush Copolymers via Self-Consistent Field Theory Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Timothy Quah
- Department of Chemical Engineering, University of California, Santa Barbara, California93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Park J, Thapar V, Choe Y, Padilla Salas LA, Ramírez-Hernández A, de Pablo JJ, Hur SM. Coarse-Grained Simulation of Bottlebrush: From Single-Chain Properties to Self-Assembly. ACS Macro Lett 2022; 11:1167-1173. [DOI: 10.1021/acsmacrolett.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juhae Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vikram Thapar
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Yeojin Choe
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | | | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
10
|
Yang Y, Lin S, Feng X, Pan Q. Synthesis and Characterization of Core‐Shell Bottlebrush Polymers via Controllable Polymerization. ChemistrySelect 2022. [DOI: 10.1002/slct.202201040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuying Yang
- Green Polymer and Catalysis Technology Laboratory (GPACT) College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Shaohui Lin
- Green Polymer and Catalysis Technology Laboratory (GPACT) College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Xianshe Feng
- Department of Chemical Engineering University of Waterloo 200 University Ave. West Waterloo Ontario N2 L 3G1 Canada
| | - Qinmin Pan
- Green Polymer and Catalysis Technology Laboratory (GPACT) College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 China
| |
Collapse
|
11
|
Zhulina EB, Mikhailov IV, Borisov OV. Theory of Mesophases of Triblock Comb-Shaped Copolymers: Effects of Dead Zones and Bridging. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Ivan V. Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau 64053, France
| |
Collapse
|
12
|
Vigil DL, Quah T, Sun D, Delaney KT, Fredrickson GH. Self-Consistent Field Theory Predicts Universal Phase Behavior for Linear, Comb, and Bottlebrush Diblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel L. Vigil
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Timothy Quah
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Dan Sun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Kim EJ, Shin JJ, Lee GS, Kim S, Park S, Park J, Choe Y, Lee D, Choi J, Bang J, Kim YH, Li S, Hur SM, Kim JG, Kim BJ. Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeman J. Shin
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sejong Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sora Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Juhae Park
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeojin Choe
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dahye Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoong Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Hun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Mi Hur
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Guo Q, Li Y, Liu Q, Li Y, Song D. Janus Photonic Microspheres with Bridged Lamellar Structures via Droplet‐Confined Block Copolymer Co‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yulian Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Qiujun Liu
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
15
|
Vashahi F, Martinez MR, Dashtimoghadam E, Fahimipour F, Keith AN, Bersenev EA, Ivanov DA, Zhulina EB, Popryadukhin P, Matyjaszewski K, Vatankhah-Varnosfaderani M, Sheiko SS. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. SCIENCE ADVANCES 2022; 8:eabm2469. [PMID: 35061528 PMCID: PMC8782458 DOI: 10.1126/sciadv.abm2469] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Injectable hydrogels are desired in many biomedical applications due to their minimally invasive deployment to the body and their ability to introduce drugs. However, current injectables suffer from mechanical mismatch with tissue, fragility, water expulsion, and high viscosity. To address these issues, we design brush-like macromolecules that concurrently provide softness, firmness, strength, fluidity, and swellability. The synthesized linear-bottlebrush-linear (LBL) copolymers facilitate improved injectability as the compact conformation of bottlebrush blocks results in low solution viscosity, while the thermoresponsive linear blocks permit prompt gelation at 37°C. The resulting hydrogels mimic the deformation response of supersoft tissues such as adipose and brain while withstanding deformations of 700% and precluding water expulsion upon gelation. Given their low cytotoxicity and mild inflammation in vivo, the developed materials will have vital implications for reconstructive surgery, tissue engineering, and drug delivery applications.
Collapse
Affiliation(s)
- Foad Vashahi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Michael R. Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Farahnaz Fahimipour
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Andrew N. Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Egor A. Bersenev
- Phystech School of Electronics, Photonics, and Molecular Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny 141700, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Dimitri A. Ivanov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, 15 rue Jean Starcky, F-68057 Mulhouse, France
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Pavel Popryadukhin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
- Corresponding author. (S.S.S.); (M.V.-V.); (K.M.)
| | - Mohammad Vatankhah-Varnosfaderani
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
- Corresponding author. (S.S.S.); (M.V.-V.); (K.M.)
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
- Corresponding author. (S.S.S.); (M.V.-V.); (K.M.)
| |
Collapse
|
16
|
Steube M, Johann T, Barent RD, Müller AH, Frey H. Rational design of tapered multiblock copolymers for thermoplastic elastomers. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Guo Q, Li Y, Liu Q, Li Y, Song DP. Janus Photonic Microspheres with Bridged Lamellar Structures via Droplet-Confined Block Copolymer Co-Assembly. Angew Chem Int Ed Engl 2021; 61:e202113759. [PMID: 34859551 DOI: 10.1002/anie.202113759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 11/07/2022]
Abstract
Artificial self-assembly systems typically exhibit limited capability in creating nature-inspired complex materials with advanced functionalities. Here, an effective co-assembly strategy is demonstrated for the facile creation of complex photonic structures with intriguing light reflections. Two different lipophilic and amphiphilic bottlebrush block copolymers (BCPs) are placed within shrinking droplets to enable a cooperative working mechanism of microphase segregation and organized spontaneous emulsification, respectively. Layer assemblies of the lipophilic BCP and uniform water nanodroplets stabilized by the bottlebrush surfactant are both generated, and co-assembled into a bridged lamellar structure with the alternating arrangement of layers and closely packed nanodroplet arrays. Janus microspheres with diverse dual optical characteristics are successfully fabricated, and reflected wavelengths of light are highly tunable simply by changing the formulation or molecular weight of BCP.
Collapse
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yulian Li
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Qiujun Liu
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
18
|
Zhulina EB, Borisov OV. Micelles Formed by an AB Copolymer with Bottlebrush Blocks: Scaling Theory. J Phys Chem B 2021; 125:12603-12616. [PMID: 34735151 DOI: 10.1021/acs.jpcb.1c07449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a scaling theory describing the equilibrium properties of spherical micelles formed by a diblock copolymer with bottlebrush blocks in a selective solvent. The theory predicts a number of new thermodynamic regimes inherent for copolymers with relatively short main chains (long side chains) in the bottlebrush blocks. These regimes with a novel set of scaling exponents for the micelle properties are characterized by limiting extension of the main chains of the core or/and corona-forming blocks and do not exist for micelles of conventional linear block copolymers. The theoretical predictions are confronted to experiments.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St.Petersburg, Russia
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St.Petersburg, Russia.,Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| |
Collapse
|
19
|
Nian S, Fan Z, Freychet G, Zhernenkov M, Redemann S, Cai LH. Self-Assembly of Flexible Linear–Semiflexible Bottlebrush–Flexible Linear Triblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shifeng Nian
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Zhouhao Fan
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Guillaume Freychet
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mikhail Zhernenkov
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903, United States
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
20
|
Park SJ, Cheong GK, Bates FS, Dorfman KD. Stability of the Double Gyroid Phase in Bottlebrush Diblock Copolymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- So Jung Park
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Guo Kang Cheong
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Mikhailov IV, Leermakers FAM, Darinskii AA, Zhulina EB, Borisov OV. Theory of Microphase Segregation in ABA Triblock Comb-Shaped Copolymers: Lamellar Mesophase. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan V. Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Frans A. M. Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, 6703 NB Wageningen, The Netherlands
| | - Anatoly A. Darinskii
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, F-64053 Pau, France
| |
Collapse
|
22
|
|
23
|
Kim EJ, Shin JJ, Do T, Lee GS, Park J, Thapar V, Choi J, Bang J, Yi GR, Hur SM, Kim JG, Kim BJ. Molecular Weight Dependent Morphological Transitions of Bottlebrush Block Copolymer Particles: Experiments and Simulations. ACS NANO 2021; 15:5513-5522. [PMID: 33591730 DOI: 10.1021/acsnano.1c00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The molecular weights and chain rigidities of block copolymers can strongly influence their self-assembly behavior, particularly when the block copolymers are under confinement. We investigate the self-assembly of bottlebrush block copolymers (BBCPs) confined in evaporative emulsions with varying molecular weights. A series of symmetric BBCPs, where polystyrene (PS) and polylactide (PLA) side-chains are grafted onto a polynorbornene (PNB) backbone, are synthesized with varying degrees of polymerization of the PNB (NPNB) ranging from 100 to 300. Morphological transitions from onion-like concentric particles to striped ellipsoids occur as the NPNB of the BBCP increases above 200, which is also predicted from coarse-grained simulations of BBCP-containing droplets by an implicit solvent model. This transition is understood by the combined effects of (i) an elevated entropic penalty associated with bending lamella domains of large molecular weight BBCP particles and (ii) the favorable parallel alignment of the backbone chains at the free surface. Furthermore, the morphological evolutions of onion-like and ellipsoidal particles are compared. Unlike the onion-like BBCP particles, ellipsoidal BBCP particles are formed by the axial development of ring-like lamella domains on the particle surface, followed by the radial propagation into the particle center. Finally, the shape anisotropies of the ellipsoidal BBCP particles are analyzed as a function of particle size. These BBCP particles demonstrate promising potential for various applications that require tunable rheological, optical, and responsive properties.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeman J Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taeyang Do
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Juhae Park
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Vikarm Thapar
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinwoong Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Su-Mi Hur
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Ji E, Cummins C, Fleury G. Precise Synthesis and Thin Film Self-Assembly of PLLA- b-PS Bottlebrush Block Copolymers. Molecules 2021; 26:1412. [PMID: 33807816 PMCID: PMC7961899 DOI: 10.3390/molecules26051412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46-58 nm and periodicities of 70-102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.
Collapse
Affiliation(s)
| | | | - Guillaume Fleury
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (E.J.); (C.C.)
| |
Collapse
|
25
|
Filatov DA, Govorun EN. Microphase separation in the melts of diblock copolymers with amphiphilic blocks. SOFT MATTER 2021; 17:90-101. [PMID: 33150920 DOI: 10.1039/d0sm01089h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembly of graft diblock copolymers is an actual topic in the development of materials with desirable properties. In the paper, microphase separation in a melt of the diblock copolymer with amphiphilic and non-amphiphilic blocks is investigated using the analytical theory in the strong segregation approximation. Non-amphiphilic blocks are strongly immiscible with the backbone chains of amphiphilic ones but miscible with their side chains. In the theory, the amphiphilic units are considered as dimers, which can easily orient at interfaces. In the case of weakly amphiphilic dimers, the interfacial tension at a flat interface is calculated using density-functional theory. The amphiphilicity effect leads to a decrease in the surface tension and, hence, to weakening of the block stretching and decrease of the spatial period of the structure. In the case of strongly amphiphilic dimers, the phase diagrams are calculated taking into account basic morphological types (spheres and inverse spheres of amphiphilic blocks, cylinders and inverse cylinders, and lamellae). If the amphiphilicity effects dominate, the characteristic size of the amphiphilic block domain is equal to the side chain length, spherical and cylindrical micelles are formed only at very low fractions of the amphiphilic blocks, the lamellae are formed at slightly larger factions, and the micelles from non-amphiphilic blocks are separated by thin interconnected layers from amphiphilic blocks in the broad range of compositions.
Collapse
Affiliation(s)
- Dmitry A Filatov
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul. 28, Moscow 119991, Russia
| | | |
Collapse
|
26
|
|
27
|
Xie R, Mukherjee S, Levi AE, Reynolds VG, Wang H, Chabinyc ML, Bates CM. Room temperature 3D printing of super-soft and solvent-free elastomers. SCIENCE ADVANCES 2020; 6:eabc6900. [PMID: 33188029 PMCID: PMC7673745 DOI: 10.1126/sciadv.abc6900] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 05/02/2023]
Abstract
Super-soft elastomers derived from bottlebrush polymers show promise as advanced materials for biomimetic tissue and device applications, but current processing strategies are restricted to simple molding. Here, we introduce a design concept that enables the three-dimensional (3D) printing of super-soft and solvent-free bottlebrush elastomers at room temperature. The key advance is a class of inks comprising statistical bottlebrush polymers that self-assemble into well-ordered body-centered cubic sphere phases. These soft solids undergo sharp and reversible yielding at 20°C in response to shear with a yield stress that can be tuned by manipulating the length scale of microphase separation. The addition of a soluble photocrosslinker allows complete ultraviolet curing after extrusion to form super-soft elastomers with near-perfect recoverable elasticity well beyond the yield strain. These structure-property design rules create exciting opportunities to tailor the performance of 3D-printed elastomers in ways that are not possible with current materials and processes.
Collapse
Affiliation(s)
- Renxuan Xie
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
| | - Sanjoy Mukherjee
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
| | - Adam E Levi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Veronica G Reynolds
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Hengbin Wang
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA
| | - Michael L Chabinyc
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, CA 93106, USA.
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Christopher M Bates
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
- Materials Department, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
28
|
Keith AN, Clair C, Lallam A, Bersenev EA, Ivanov DA, Tian Y, Dobrynin AV, Sheiko SS. Independently Tuning Elastomer Softness and Firmness by Incorporating Side Chain Mixtures into Bottlebrush Network Strands. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew N. Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Charles Clair
- Laboratoire de Physique et Mécanique Textiles, Université de Haute Alsace, 11 rue Alfred Werner, F-68093 Cedex Mulhouse, France
| | - Abdelaziz Lallam
- Laboratoire de Physique et Mécanique Textiles, Université de Haute Alsace, 11 rue Alfred Werner, F-68093 Cedex Mulhouse, France
| | - Egor A. Bersenev
- Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation
| | - Dimitri A. Ivanov
- CNRS UMR 7361, Institut de Sciences des Matériaux de Mulhouse-IS2M, 15, rue Jean Starcky, F-68057 Mulhouse, France
- Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation
| | - Yuan Tian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Mikhailov IV, Zhulina EB, Borisov OV. Brushes and lamellar mesophases of comb-shaped (co)polymers: a self-consistent field theory. Phys Chem Chem Phys 2020; 22:23385-23398. [PMID: 33048067 DOI: 10.1039/d0cp02954h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theory describing equilibrium structural properties of solvent-free brushes formed by comblike polymers tethered by end segment of backbone to planar surface is developed using strong-stretching self-consistent field (SS-SCF) analytical approach and supported by numerical self-consistent field calculations based on the Scheutjens-Fleer (SF-SCF) method. The explicit dependence of self-consistent molecular potential on architectural parameters of comblike polymers is analyzed. It is demonstrated that distribution of local tension in backbones of long comblike polymers approaches that for linear chains. The star-to-comblike transition in solvent-free lamellas which occurs upon increase of backbone length of graft-polymer is analyzed.
Collapse
Affiliation(s)
- Ivan V Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|