1
|
Qiao Z, Xu J, Gallazzi F, Fisher DR, Gonzalez R, Kwak J, Miao Y. Effect of Ibuprofen as an Albumin Binder on Melanoma-Targeting Properties of 177Lu-Labeled Ibuprofen-Conjugated Alpha-Melanocyte-Stimulating Hormone Peptides. Mol Pharm 2024; 21:4004-4011. [PMID: 38973113 DOI: 10.1021/acs.molpharmaceut.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The purpose of this study was to examine how the introduction of ibuprofen (IBU) affected tumor-targeting and biodistribution properties of 177Lu-labeled IBU-conjugated alpha-melanocyte-stimulating hormone peptides. The IBU was used as an albumin binder and conjugated to the DOTA-Lys moiety without or with a linker to yield DOTA-Lys(IBU)-GG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(IBU)-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex peptides. Their melanocortin-receptor 1 (MC1R) binding affinities were determined on B16/F10 melanoma cells first. Then the biodistribution of 177Lu-labeled peptides was determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to choose the lead peptide for further examination. The full biodistribution and melanoma imaging properties of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex were further evaluated using B16/F10 melanoma-bearing C57 mice. DOTA-Lys(IBU)-GG-Nle-CycMSHhex, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex displayed the IC50 values of 1.41 ± 0.37, 1.52 ± 0.08, 0.03 ± 0.01, and 0.58 ± 0.06 nM on B16/F10 melanoma cells, respectively. 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex exhibited the lowest liver and kidney uptake among all four designed 177Lu peptides. Therefore, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was further evaluated for its full biodistribution and melanoma imaging properties. The B16/F10 melanoma uptake of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was 19.5 ± 3.12, 24.12 ± 3.35, 23.85 ± 2.08, and 10.80 ± 2.89% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Moreover, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex could clearly visualize the B16/F10 melanoma lesions at 2 h postinjection. The conjugation of IBU with or without a linker to GGNle-CycMSHhex affected the MC1R binding affinities of the designed peptides. The charge of the linker played a key role in the liver and kidney uptake of 177Lu-Asp-IBU, 177Lu-Asn-IBU, and 177Lu-Dab-IBU. 177Lu-Asp-IBU exhibited higher tumor/liver and tumor/kidney uptake ratios than those of 177Lu-Asn-IBU and 177Lu-Dab-IBU, underscoring its potential evaluation for melanoma therapy in the future.
Collapse
Affiliation(s)
- Zheng Qiao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Jingli Xu
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interactions Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Darrell R Fisher
- Versant Medical Physics and Radiation Safety, Richland, Washington 99354, United States
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Jennifer Kwak
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
Li L, Wang J, Wang G, Wang R, Jin W, Zang J, Sui H, Jia C, Jiang Y, Hong H, Zhu L, Alexoff D, Ploessl K, Kung HF, Zhu Z. Comparison of novel PSMA-targeting [ 177Lu]Lu-P17-087 with its albumin binding derivative [ 177Lu]Lu-P17-088 in metastatic castration-resistant prostate cancer patients: a first-in-human study. Eur J Nucl Med Mol Imaging 2024; 51:2794-2805. [PMID: 38658392 DOI: 10.1007/s00259-024-06721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and radioligand therapy (RLT) of prostate cancer. Two novel PSMA-targeting radionuclide therapy agents, [177Lu]Lu-P17-087, and its albumin binder modified derivative, [177Lu]Lu-P17-088, were evaluated in metastatic castration-resistant prostate cancer (mCRPC) patients. The primary endpoint was dosimetry evaluation, the second endpoint was radiation toxicity assessment (CTCAE 5.0) and PSA response (PCWG3). METHODS Patients with PSMA-positive tumors were enrolled after [68Ga]Ga-PSMA-11 PET/CT scan. Five mCRPC patients received [177Lu]Lu-P17-087 and four other patients received [177Lu]Lu-P17-088 (1.2 GBq/patient). Multiple whole body planar scintigraphy was performed at 1.5, 4, 24, 48, 72, 120 and 168 h after injection and one SPECT/CT imaging was performed at 24 h post-injection for each patient. Dosimetry evaluation was compared in both patient groups. RESULTS Patients showed no major clinical side-effects under this low dose treatment. As expected [177Lu]Lu-P17-088 with longer blood circulation (due to its albumin binding) exhibited higher effective doses than [177Lu]Lu-P17-087 (0.151 ± 0.036 vs. 0.056 ± 0.019 mGy/MBq, P = 0.001). Similarly, red marrow received 0.119 ± 0.068 and 0.048 ± 0.020 mGy/MBq, while kidney doses were 0.119 ± 0.068 and 0.046 ± 0.022 mGy/MBq, respectively. [177Lu]Lu-P17-087 demonstrated excellent tumor uptake and faster kinetics; while [177Lu]Lu-P17-088 displayed a slower washout and higher average dose (7.75 ± 4.18 vs. 4.72 ± 2.29 mGy/MBq, P = 0.018). After administration of [177Lu]Lu-P17-087 and [177Lu]Lu-P17-088, 3/5 and 3/4 patients showed reducing PSA values, respectively. CONCLUSION [177Lu]Lu-P17-088 and [177Lu]Lu-P17-087 displayed different pharmacokinetics but excellent PSMA-targeting dose delivery in mCRPC patients. These two agents are promising RLT agents for personalized treatment of mCRPC. Further studies with increased dose and frequency of RLT are warranted to evaluate the potential therapeutic efficacy. TRIAL REGISTRATION 177Lu-P17-087/177Lu-P17-088 in Patients with Metastatic Castration-resistant Prostate Cancer (NCT05603559, Registered at 25 October, 2022). URL OF REGISTRY: https://classic. CLINICALTRIALS gov/ct2/show/NCT05603559 .
Collapse
Affiliation(s)
- Linlin Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing St., Dongcheng District, Beijing, 100730, China
| | - Jiarou Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing St., Dongcheng District, Beijing, 100730, China
| | - Guochang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing St., Dongcheng District, Beijing, 100730, China
| | - Wenbin Jin
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Jie Zang
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huimin Sui
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing St., Dongcheng District, Beijing, 100730, China
| | - Chenhao Jia
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing St., Dongcheng District, Beijing, 100730, China
| | - Yuanyuan Jiang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing St., Dongcheng District, Beijing, 100730, China
| | - Haiyan Hong
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Lin Zhu
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - David Alexoff
- Five Eleven Pharma Inc, Philadelphia, PA, 19104, USA
| | - Karl Ploessl
- Five Eleven Pharma Inc, Philadelphia, PA, 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc, Philadelphia, PA, 19104, USA.
- Department of Radiology, University of Pennsylvania, 3700 Market Street, Room 305, Philadelphia, PA, 19104, USA.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing St., Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
3
|
Capasso G, Stefanucci A, Tolomeo A. A systematic review on the current status of PSMA-targeted imaging and radioligand therapy. Eur J Med Chem 2024; 263:115966. [PMID: 37992520 DOI: 10.1016/j.ejmech.2023.115966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Prostate specific membrane antigen (PSMA) has been the subject of several studies in recent decades as a promising molecular target for prostate cancer (PCa), in fact it is considered an excellent molecular target for both PCa imaging (both for staging and follow-up), by means of PET/CT and for radioligand therapy. Its interesting molecular features have enabled the development of a new diagnostic and therapeutic approach for PCa, called "theranostics." Considering the abundance of PSMA-based probes that have appeared so far in the literature, the present work focuses the attention on radiopharmaceuticals with increasing clinical application, highlighting advantages and disadvantages in terms of different metabolization and excretion processes, pharmacokinetic, binding affinity and variable internalization rate, tumor-to-background ratio, residence times and toxicity profile.
Collapse
Affiliation(s)
- Giuseppe Capasso
- ITEL TELECOMUNICAZIONI S.r.l - Radiopharmaceutical Division, Italy.
| | - Azzurra Stefanucci
- Department of Pharmacy, Università degli Studi "G. d'Annunzio" Chieti, Pescara, Italy.
| | - Anna Tolomeo
- ITEL TELECOMUNICAZIONI S.r.l - Radiopharmaceutical Division, Italy.
| |
Collapse
|
4
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
5
|
Boinapally S, Alati S, Jiang Z, Yan Y, Lisok A, Singh R, Lofland G, Minn I, Hobbs RF, Pomper MG, Banerjee SR. Preclinical Evaluation of a New Series of Albumin-Binding 177Lu-Labeled PSMA-Based Low-Molecular-Weight Radiotherapeutics. Molecules 2023; 28:6158. [PMID: 37630410 PMCID: PMC10459686 DOI: 10.3390/molecules28166158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA)-based low-molecular-weight agents using beta(β)-particle-emitting radiopharmaceuticals is a new treatment paradigm for patients with metastatic castration-resistant prostate cancer. Although results have been encouraging, there is a need to improve the tumor residence time of current PSMA-based radiotherapeutics. Albumin-binding moieties have been used strategically to enhance the tumor uptake and retention of existing PSMA-based investigational agents. Previously, we developed a series of PSMA-based, β-particle-emitting, low-molecular-weight compounds. From this series, 177Lu-L1 was selected as the lead agent because of its reduced off-target radiotoxicity in preclinical studies. The ligand L1 contains a PSMA-targeting Lys-Glu urea moiety with an N-bromobenzyl substituent in the ε-amino group of Lys. Here, we structurally modified 177Lu-L1 to improve tumor targeting using two known albumin-binding moieties, 4-(p-iodophenyl) butyric acid moiety (IPBA) and ibuprofen (IBU), and evaluated the effects of linker length and composition. Six structurally related PSMA-targeting ligands (Alb-L1-Alb-L6) were synthesized based on the structure of 177Lu-L1. The ligands were assessed for in vitro binding affinity and were radiolabeled with 177Lu following standard protocols. All 177Lu-labeled analogs were studied in cell uptake and selected cell efficacy studies. In vivo pharmacokinetics were investigated by conducting tissue biodistribution studies for 177Lu-Alb-L2-177Lu-Alb-L6 (2 h, 24 h, 72 h, and 192 h) in male NSG mice bearing human PSMA+ PC3 PIP and PSMA- PC3 flu xenografts. Preliminary therapeutic ratios of the agents were estimated from the area under the curve (AUC0-192h) of the tumors, blood, and kidney uptake values. Compounds were obtained in >98% radiochemical yields and >99% purity. PSMA inhibition constants (Kis) of the ligands were in the ≤10 nM range. The long-linker-based agents, 177Lu-Alb-L4 and 177Lu-Alb-L5, displayed significantly higher tumor uptake and retention (p < 0.001) than the short-linker-bearing 177Lu-Alb-L2 and 177Lu-Alb-L3 and a long polyethylene glycol (PEG) linker-bearing agent, 177Lu-Alb-L6. The area under the curve (AUC0-192h) of the PSMA+ PC3 PIP tumor uptake of 177Lu-Alb-L4 and 177Lu-Alb-L5 were >4-fold higher than 177Lu-Alb-L2, 177Lu-Alb-L3, and 177Lu-Alb-L6, respectively. Also, the PSMA+ PIP tumor uptake (AUC0-192h) of 177Lu-Alb-L2 and 177Lu-Alb-L3 was ~1.5-fold higher than 177Lu-Alb-L6. However, the lowest blood AUC0-192h and kidney AUC0-192h were associated with 177Lu-Alb-L6 from the series. Consequently, 177Lu-Alb-L6 displayed the highest ratios of AUC(tumor)-to-AUC(blood) and AUC(tumor)-to-AUC(kidney) values from the series. Among the other agents, 177Lu-Alb-L4 demonstrated a nearly similar ratio of AUC(tumor)-to-AUC(blood) as 177Lu-Alb-L6. The tumor-to-blood ratio was the dose-limiting therapeutic ratio for all of the compounds. Conclusions: 177Lu-Alb-L4 and 177Lu-Alb-L6 showed high tumor uptake in PSMA+ tumors and tumor-to-blood ratios. The data suggest that linker length and composition can be modulated to generate an optimized therapeutic agent.
Collapse
Affiliation(s)
- Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Zirui Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Yu Yan
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Alla Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Gabriela Lofland
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Robert F. Hobbs
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, 1550 Orleans Street, Cancer Research Building 2, Baltimore, MD 21287, USA; (S.B.); (S.A.); (Z.J.); (I.M.); (R.F.H.); (M.G.P.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Cai P, Tang S, Xia L, Wang Y, Liu Y, Feng Y, Liu N, Chen Y, Zhou Z. Improve the Biodistribution with Bulky and Lipophilic Modification Strategies on Lys-Urea-Glu-Based PSMA-Targeting Radiotracers. Mol Pharm 2023; 20:1435-1446. [PMID: 36696174 DOI: 10.1021/acs.molpharmaceut.2c01101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since prostate-specific membrane antigen (PSMA) is upregulated in nearly all stages of prostate cancer (PCa), PSMA can be considered a viable diagnostic biomarker and treatment target in PCa. In this study, we have developed five 68Ga-labeled PSMA-targeted tracers, 68Ga-Flu-1, 68Ga-Flu-2, 68Ga-9-Ant, 68Ga-1-Nal, and 68Ga-1-Noi, to investigate the effect of lipophilic bulky groups on the pharmacokinetics of PSMA inhibitors compared to 68Ga-PSMA-11 and then explore their in vitro and in vivo properties. 68Ga-labeled PSMA inhibitors were obtained in 88.53-99.98% radiochemical purity and at the highest specific activity of up to 20 MBq/μg. These compounds revealed a highly efficient uptake and internalization into LNCaP cells and increased over time. PET imaging and biodistribution studies were performed in mice bearing PSMA expressing LNCaP prostate cancer xenografts. All tracers enabled clear visualization of tumors in PET images with excellent tumor-to-background contrast. The biodistribution studies showed that all these radioligands were excreted mainly via the renal pathway. The in vivo biodistribution of 68Ga-Flu-1 revealed higher tumor uptake (40.11 ± 9.24 %ID/g at 2 h p.i.) compared to 68Ga-PSMA-11 (28.10 ± 5.96 %ID/g at 2 h p.i.). Both in vitro and in vivo experiments showed that chemical modification of the lysine fragment significantly impacts tumor-targeting and pharmacokinetic properties. Great potential to serve as new PET tracers for prostate cancer has been revealed with these radiotracers─68Ga-Flu-1 in particular.
Collapse
Affiliation(s)
- Ping Cai
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Sufan Tang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Li Xia
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Yinwen Wang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Yang Liu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Yue Feng
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Zhijun Zhou
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou 646000, Sichuan, China.,Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China.,Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| |
Collapse
|
7
|
Blocking Studies to Evaluate Receptor-Specific Radioligand Binding in the CAM Model by PET and MR Imaging. Cancers (Basel) 2022; 14:cancers14163870. [PMID: 36010864 PMCID: PMC9406147 DOI: 10.3390/cancers14163870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the development of new targeted radiopharmaceuticals, it is mandatory to demonstrate their target-specific binding. Rodents are still primarily used for these experiments. With respect to the 3Rs principles, the demand for alternative methods to reduce the number of animal experiments is continuously increasing. In the present study, we investigated whether radiotracer uptake specificity can be evaluated by blocking studies in the CAM model. PET and MR imaging were used to visualize and quantify ligand accumulation. It was demonstrated that the CAM model could be used to evaluate the target-specific binding of a radiopharmaceutical. Due to intrinsic limitations of the CAM model, animal testing will still be required at more advanced stages of compound development. Still, the CAM model could significantly reduce the number of experiments through early compound pre-selection. Abstract Inhibition studies in small animals are the standard for evaluating the specificity of newly developed drugs, including radiopharmaceuticals. Recently, it has been reported that the tumor accumulation of radiotracers can be assessed in the chorioallantoic membrane (CAM) model with similar results to experiments in mice, such contributing to the 3Rs principles (reduction, replacement, and refinement). However, inhibition studies to prove receptor-specific binding have not yet been performed in the CAM model. Thus, in the present work, we analyzed the feasibility of inhibition studies in ovo by PET and MRI using the PSMA-specific ligand [18F]siPSMA-14 and the corresponding inhibitor 2-PMPA. A dose-dependent blockade of [18F]siPSMA-14 uptake was successfully demonstrated by pre-dosing with different inhibitor concentrations. Based on these data, we conclude that the CAM model is suitable for performing inhibition studies to detect receptor-specific binding. While in the later stages of development of novel radiopharmaceuticals, testing in rodents will still be necessary for biodistribution analysis, the CAM model is a promising alternative to mouse experiments in the early phases of compound evaluation. Thus, using the CAM model and PET and MR imaging for early pre-selection of promising radiolabeled compounds could significantly reduce the number of animal experiments.
Collapse
|
8
|
Xu J, Gallazzi F, Fisher DR, Gonzalez R, Miao Y. The Effect of Albumin-Binding Moiety on Tumor Targeting and Biodistribution Properties of 67Ga-Labeled Albumin Binder-Conjugated Alpha-Melanocyte-Stimulating Hormone Peptides. Cancer Biother Radiopharm 2022; 37:47-55. [PMID: 34762521 PMCID: PMC8865629 DOI: 10.1089/cbr.2021.0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: The purpose of this study was to examine the effect of 4-p-(tolyl)butyric acid as an albumin-binding (ALB) moiety on tumor targeting and biodistribution properties of 67Ga-labeled albumin binder-conjugated alpha-melanocyte-stimulating hormone peptides. Materials and Methods: DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(ALB)-Gly/GlyGly/GlyGlyGly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} were synthesized with 4-p-(tolyl)butyric acid serving as an ALB moiety. The melanocortin-1 receptor (MC1R)-binding affinities of the peptides were determined on B16/F10 melanoma cells. The biodistribution of 67Ga-DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex was examined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 67Ga-DOTA-Lys(ALB)-GGNle-CycMSHhex {67Ga-ALB-G2} were determined on B16/F10 melanoma-bearing C57 mice. Results: The IC50 value of DOTA-Lys(ALB)-G/GG/GGG-Nle-CycMSHhex {ALB-G1, ALB-G2, ALB-G3} was 0.67 ± 0.07, 0.5 ± 0.09 and 0.51 ± 0.03 nM on B16/F10 cells, respectively. 67Ga-ALB-G2 was further evaluated as a lead peptide because of its higher tumor uptake (30.25 ± 3.24%ID/g) and lower kidney uptake (7.09 ± 2.22%ID/g) than 67Ga-ALB-G1 and 67Ga-ALB-G3 at 2 h postinjection. The B16/F10 melanoma uptake of 67Ga-ALB-G2 was 15.64 ± 4.55, 30.25 ± 3.24, 26.76 ± 3.23, and 10.71 ± 1.21%ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. The B16/F10 melanoma lesions were clearly visualized by SPECT/CT using 67Ga-ALB-G2 as an imaging probe at 2 h postinjection. Conclusions: The introduction of 4-p-(tolyl)butyric acid as an ALB moiety increased the blood retention, and resulted in higher tumor/kidney ratio of 67Ga-ALB-G2 as compared with its counterpart without an albumin binder. However, the resulting high uptake of 67Ga-ALB-G2 in blood and liver need to be further reduced to facilitate its therapeutic application when replacing 67Ga with therapeutic radionuclides.
Collapse
Affiliation(s)
- Jingli Xu
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interactions Core, University of Missouri, Columbia, Missouri, USA
| | - Darrell R. Fisher
- Department of Pharmaceutical Sciences, Washington State University, Richland, Washington, USA
| | - Rene Gonzalez
- Department of Medical Oncology, University of Colorado Denver, Aurora, Colorado, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA.,Address correspondence to: Yubin Miao; Department of Radiology, School of Medicine, University of Colorado Denver; 12700 East 19th Avenue, MS C278, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|
10
|
Lee BS, Kim MH, Chu SY, Jung WJ, Jeong HJ, Lee K, Kim HS, Kim MH, Kil HS, Han SJ, Lee YJ, Lee KC, Lim SM, Chi DY. Improving Theranostic Gallium-68/Lutetium-177-Labeled PSMA Inhibitors with an Albumin Binder for Prostate Cancer. Mol Cancer Ther 2021; 20:2410-2419. [PMID: 34725194 DOI: 10.1158/1535-7163.mct-21-0251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
We developed a novel therapeutic radioligand, [177Lu]1h, with an albumin binding motif and evaluated it in a prostate-specific membrane antigen (PSMA)-expressing tumor xenograft mouse model. Fourteen PSMA target candidates were synthesized, and binding affinity was evaluated with an in vitro competitive binding assay. First, four compound candidates were selected depending on binding affinity results. Next, we selected four compounds ([68Ga]1e, [68Ga]1g, [68Ga]1h, and [68Ga]1k) were screened for tumor targeting efficiency by micro-positron emission tomography/computed tomography (micro-PET/CT) imaging. Finally, [177Lu]1h compound was evaluated the tumor targeting efficiency and therapeutic efficiency by micro-single-photon emission computed tomography/computed tomography (micro-SPECT/CT), biodistribution, and radiotherapy studies. Estimated human effective dose was calculated by biodistribution data. Compound 1h showed a high binding affinity (Ki value = 4.08 ± 0.08 nmol/L), and [177Lu]1h showed extended blood circulation (1 hour = 10.32 ± 0.31, 6 hours = 2.68 ± 1.07%ID/g) compared to [177Lu]PSMA-617 (1 h = 0.17 ± 0.10%ID/g). [177Lu]1h was excreted via the renal pathway and showed high tumor uptake (24.43 ± 3.36%ID/g) after 1 hour, which increased over 72 hours (72 hours = 51.39 ± 9.26%ID/g). Mice treated with 4 and 6 MBq of [177Lu]1h showed a median survival rate of >61 days. In particular, all mice treated with 6 MBq of [177Lu]1h survived for the entire monitoring period. The estimated human effective dose of [177Lu]1h was 0.07 ± 0.01 and 0.03 ± 0.00 mSv/MBq in total body and kidney, respectively. The current study indicates that [177Lu]1h has the potential for further investigation of metastatic castration-resistant prostate cancer (mCRPC) therapy in clinical trials.
Collapse
Affiliation(s)
- Byoung Se Lee
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Min Hwan Kim
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - So Young Chu
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Woon Jung Jung
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Hyeon Jin Jeong
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Kyongkyu Lee
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Hyeon Seok Kim
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Mi Hyun Kim
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Hee Seup Kil
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Dae Yoon Chi
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
11
|
Shahrokhi P, Masteri Farahani A, Tamaddondar M, Rezazadeh F. The utility of radiolabeled PSMA ligands for tumor imaging. Chem Biol Drug Des 2021; 99:136-161. [PMID: 34472217 DOI: 10.1111/cbdd.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a glycosylated type-II transmembrane protein expressed in prostatic tissue and significantly overexpressed in several prostate cancer cells. Despite its name, PSMA has also been reported to be overexpressed in endothelial cells of benign and malignant non-prostate disease. So its clinical use was extended to detection, staging, and therapy of various tumor types. Recently small molecules targeting PSMA have been developed as imaging probes for diagnosis of several malignancies. Preliminary studies are emerging improved diagnostic sensitivity and specificity of PSMA imaging, leading to a change in patient management. In this review, we evaluated the first preclinical and clinical studies on PSMA ligands resulting future perspectives radiolabeled PSMA in staging and molecular characterization, based on histopathologic examinations of PSMA expression.
Collapse
Affiliation(s)
- Pejman Shahrokhi
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Arezou Masteri Farahani
- Nuclear Medicine Center, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Mohammad Tamaddondar
- Nephrology Department, Payambar Azam Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Chigoho DM, Bridoux J, Hernot S. Reducing the renal retention of low- to moderate-molecular-weight radiopharmaceuticals. Curr Opin Chem Biol 2021; 63:219-228. [PMID: 34325089 DOI: 10.1016/j.cbpa.2021.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
The field of nuclear imaging and therapy is rapidly progressing with the development of targeted radiopharmaceuticals that show rapid targeting and rapid clearance with minimal background. Unfortunately, they are often reabsorbed in the kidneys, leading to possible nephrotoxicity, limiting the therapeutic dose, and/or reducing imaging quality. The blocking of endocytic receptors has been extensively used as a strategy to reduce kidney radiation. Alternatively, the physicochemical properties of radiotracers can be modulated to either prevent their reuptake or promote the excretion of radiometabolites. Other interesting strategies focus on the insertion of a cleavable linker between the radiolabel and the targeting moiety or pretargeting approaches in which the targeting moiety and radiolabel are administered separately. In the context of this review, we will discuss the latest advances and insights on strategies used to reduce renal retention of low- to moderate-molecular-weight radiopharmaceuticals.
Collapse
Affiliation(s)
- Dora Mugoli Chigoho
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
13
|
Kuo HT, Lin KS, Zhang Z, Uribe CF, Merkens H, Zhang C, Bénard F. 177Lu-Labeled Albumin-Binder-Conjugated PSMA-Targeting Agents with Extremely High Tumor Uptake and Enhanced Tumor-to-Kidney Absorbed Dose Ratio. J Nucl Med 2021; 62:521-527. [PMID: 32859704 PMCID: PMC8049373 DOI: 10.2967/jnumed.120.250738] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
The use of an albumin binder has been shown to improve tumor uptake of prostate-specific membrane antigen (PSMA)-targeting radiotherapeutic agents. The aim of this study was to develop improved radiotherapeutic agents that combine an optimized affinity-modifying group and optimized albumin binders to maximize the tumor-to-kidney absorbed dose ratio. Methods:68Ga-labeled DOTA-conjugated lysine-ureido-glutamate-based PSMA-targeting agents bearing various affinity-modifying groups or albumin binders were synthesized and evaluated by PET/CT imaging and biodistribution studies in LNCaP tumor-bearing mice. The optimized affinity-modifying group and albumin binders were combined, and the resulting derivatives were radiolabeled with 177Lu and evaluated by SPECT/CT imaging and biodistribution studies in LNCaP tumor-bearing mice. Radiation dosimetry was calculated using the OLINDA/EXM software. Results: Affinity-modifying group optimization revealed that 68Ga-HTK03041 bearing a tranexamic acid-9-anthrylalanine affinity-modifying group had the highest tumor uptake (23.1 ± 6.11 percentage injected dose [%ID]/g at 1 h after injection). Albumin binder optimization showed that 68Ga-HTK03055 and 68Ga-HTK03086 bearing the N-(4-(p-chlorophenyl)butanoyl)-Gly and N-(4-(p-methoxyphenyl)butanoyl)-Gly motifs, respectively, had relatively faster tumor accumulation (∼30 %ID/g at 3 h after injection) and lower average kidney uptake (<55 %ID/g at both 1 and 3 h after injection). Combining the tranexamic acid-9-anthrylalanine affinity-modifying group with N-(4-(p-chlorophenyl)butanoyl)-Gly and N-(4-(p-methoxyphenyl)butanoyl)-Gly albumin-binding motifs generated HTK03121 and HTK03123, respectively. 177Lu-HTK03121 and 177Lu-HTK03123 had extremely high peak uptake (104 ± 20.3 and 70.8 ± 23.7 %ID/g, respectively) in LNCaP tumor xenografts, and this peak was sustained up to 120 h after injection. Dosimetry calculation showed that compared with 177Lu-PSMA-617, 177Lu-HTK03121 and 177Lu-HTK03123 delivered 18.7- and 12.7-fold higher absorbed dose to tumor but only 6.4- and 6.3-fold higher absorbed dose to kidneys, leading to 2.9- and 2.0-fold improvement in the tumor-to-kidney absorbed dose ratios. Conclusion: With greatly enhanced tumor uptake and tumor-to-kidney absorbed dose ratio, 177Lu-HTK03121 and 177Lu-HTK03123 have the potential to improve treatment efficacy using significantly lower quantities of 177Lu and are promising candidates for clinical translation to treat metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, British Columbia, Canada; and
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Carlos F Uribe
- Department of Functional Imaging, BC Cancer, Vancouver, British Columbia, Canada; and
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, British Columbia, Canada; and
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|